Difference between revisions of "Reconstructing Moller Events"

From New IAC Wiki
Jump to navigation Jump to search
 
(70 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
=Setup=
 
=Setup=
Since we want to run for a evenly spaced energy range for Moller electrons, we will need to use some of the scattered electrons to help cover this range.  A Moller scattering data file of 1E7 events has no Moller electrons with momentum over 5500 MeV.  Since momentum is conserved, and the data is verified kinematicly verified, we can simply "switch" the data.  This data can then be altered to have a certain number of different phi values for each energy to match the Moller cross section.  This data can then be written to a LUND file, and compared to the previous calculations which did not factor in loss of initial energy.
+
Since we want to run for a evenly spaced energy range for Moller electrons, we will need to use some of the scattered electrons to help cover this range.  A Moller scattering data file of 1E7 events has no Moller electrons with momentum over 5500 MeV.  Since momentum is conserved, and the data is verified kinematicly verified, we cannot simply "switch" the data.  This data can be altered to have a certain number of different phi values for each energy to match the Moller cross section.  This data can then be written to a LUND file, and compared to the previous calculations which did not factor in loss of initial energy.
  
 
=Prepare Data=
 
=Prepare Data=
 +
 +
Using the existing Moller scattering data from a GEANT simulation of 4E7 incident electrons, a file of just scattered momentum components can be constructed using:
 +
 +
<pre>
 +
awk '{print $9, $10, $11, $16, $17, $18}' MollerScattering_NH3_Large.dat > Just_Scattered_Momentum.dat
 +
</pre>
  
 
=Transfer to CM Frame=
 
=Transfer to CM Frame=
We can perform a Lorentz transformation from the Center of Mass frame, with zero total momentum, to the Lab frame.
+
==Center of Mass Frame==
 +
===4-Momentum Invariants===
 +
 
 +
<center>[[File:CM.png |400 px]]</center>
 +
<center>'''Figure 1: Definition of variables in the Center of Mass Frame'''</center>
 +
 
 +
 
 +
Starting with the definition for the total relativistic energy:
 +
 
 +
 
 +
<center><math>E^2\equiv p^2c^2+m^2c^4</math></center>
 +
 
 +
 
 +
<center><math>\Longrightarrow  {E^2}-p^2c^2=(mc^2)^2</math></center>
 +
Since we can assume that the frame of reference is an inertial frame, it moves at a constant velocity, the mass should remain constant. 
 +
 
 +
 
 +
<center><math>\frac {d\vec p}{dt}=0\Rightarrow \frac{d(m\vec v)}{dt}=\frac{c\ dm}{dt}\Rightarrow \frac{dm}{dt}=0</math></center>
 +
 
 +
 
 +
<center><math> \therefore m=const</math></center>
 +
 
 +
 
 +
We can use 4-momenta vectors, i.e. <math>{\mathbf P}\equiv \left(Epxpypz \right)=\left(Ep \right)</math> ,with c=1, to describe the variables in the CM Frame.
 +
 
 +
 
 +
 
 +
Using the fact that the scalar product of a 4-momenta with itself,
 +
 
 +
 
 +
 
 +
<center><math>{\mathbf P_1}\cdot {\mathbf P^1}=P_{\mu}g_{\mu \nu}P^{\nu}=\left(Epxpypz \right)\cdot \left( 1000010000100001 \right)\cdot \left(Epxpypz \right)</math></center>
 +
 
 +
 
 +
 
 +
<center><math>{\mathbf P_1}\cdot {\mathbf P^1}=E_1E_1-\vec p_1\cdot \vec p_1 =m_{1}^2=s</math></center>
 +
 
 +
 
 +
is invariant. 
 +
 
 +
 
 +
Using this notation, the sum of two 4-momenta forms a 4-vector as well
 +
 
 +
<center><math>{\mathbf P_1}+ {\mathbf P_2}= \left( E1+E2p1+p2 \right)= {\mathbf P}</math></center>
 +
 
 +
The length of this four-vector is an invariant as well
 +
 
 +
<center><math>{\mathbf P^2}=({\mathbf P_1}+{\mathbf P_2})^2=(E_1+E_2)^2-(\vec p_1 +\vec p_2 )^2=(m_1+m_2)^2=s</math></center>
 +
 
 +
===Equal masses===
 +
For incoming electrons moving only in the z-direction, we can write
 +
 
 +
 
 +
<center><math>{\mathbf P_1}+ {\mathbf P_2}= \left( E1+E200p1(z)+p2(z) \right)={\mathbf P}</math></center>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
We can perform a Lorentz transformation to the Center of Mass frame, with zero total momentum
 +
 
 +
 
 +
<center><math>\left( E1+E2000 \right)=\left(γ00βγ01000010βγ00γ \right) . \left( E1+E200p1(z)+p2(z) \right)</math></center>
 +
 
 +
Without knowing the values for gamma or beta, we can utalize the fact that lengths of the two 4-momenta are invariant
 +
 
 +
<center><math>s={\mathbf P^*}^2=(E^*_{1}+E^*_{2})^2-(\vec p\ ^*_{1}+\vec p\ ^*_{2})^2=(m_{1}^*+m_{2}^*)^2</math></center>
 +
 
 +
 
 +
<center><math>s={\mathbf P}^2=(E_{1}+E_{2})^2-(\vec p_{1}+\vec p_{2})^2=(m_{1}+m_{2})^2</math></center>
 +
 
 +
 
 +
 
 +
This gives,
 +
<center><math>\Longrightarrow (m_{1}^*+m_{2}^*)^2=(m_{1}+m_{2})^2</math></center>
 +
 
 +
 
 +
Using the fact that
 +
 
 +
<center><math>\begin{cases}
 +
m_{1}=m_{2} \\
 +
m_{1}^*=m_{2}^*
 +
\end{cases}</math></center>
 +
since the rest mass energy of the electrons remains the same in inertial frames.
 +
 
 +
 
 +
Substituting, we find
 +
<center><math>(m_{1}^*+m_{1}^*)^2=(m_{1}+m_{1})^2</math></center>
 +
 
 +
 
 +
 
 +
<center><math>2m_{1}^*=2m_{1}</math></center>
 +
 
 +
 
 +
 
 +
<center><math>m_{1}^*=m_{1}</math></center>
 +
 
 +
 
 +
 
 +
<center><math>\Longrightarrow m_{1}=m^*_{1}\ ; m_{2}=m^*_{2}</math></center>
 +
 
 +
 
 +
This confirms that the mass remains constant between the frames of reference.
 +
 
 +
 
 +
 
 +
 
 +
===Total Energy in CM===
 +
 
 +
Setting the lengths of the 4-momenta equal to each other,
 +
 
 +
<center><math>{\mathbf P^*}^2={\mathbf P}^{'2}</math></center>
 +
 
 +
 
 +
 
 +
we can use this for the collision of two particles of mass m.  Since the total momentum is zero in the Center of Mass frame, we can express total energy in the center of mass frame as
 +
 
 +
<center><math>(E^*_{1}+E^*_{2})^2-(\vec p\ ^*_{1}+\vec p\ ^*_{2})^2=s=(E_{1}^'+E_{2}^')^2-(\vec{p_{1}}^'+\vec {p_{2}}^')^2</math></center>
 +
 
 +
 
 +
<center><math>(E^*)^2-(\vec p\ ^*)^2=(E_{1}^'+E_{2}^')^2-(\vec{p_{1}}^'+\vec {p_{2}}^')^2</math></center>
 +
 
 +
 
 +
<center><math>(E^*)^2=(E_{1}^'+E_{2}^')^2-(\vec{p_{1}}^'+\vec {p_{2}}^')^2</math></center>
  
  
<center><math>\left( \begin{matrix}E^*_{1}+E^*_{2}\\ p^*_{1(x)}+p^*_{2(x)} \\p^*_{1(y)}+ p^*_{2(y)} \\ p^*_{1(z)}+p^*_{2(z)}\end{matrix} \right)=\left(\begin{matrix}\gamma & 0 & 0 & \beta \gamma^*\\0 & 1 & 0 & 0 \\ 0 & 0 & 1 &0 \\ \beta \gamma & 0 & 0 & \gamma \end{matrix} \right) . \left( \begin{matrix}E^'_{1}+E^'_{2}\\ p^'_{1(x)}+p^'_{2(x)} \\ p^'_{(1(y)}+p^'_{2(y)} \\ p^'_{1(z)}+p^'_{2(z)}\end{matrix} \right)</math></center>
+
{| class="wikitable" align="center"
 +
| style="background: gray"      | <math>E^*=\sqrt{(E_{1}^'+E_{2}^')^2-(\vec{p_{1}}^'+\vec {p_{2}}^')^2}</math>
 +
|}
  
  
  
<center><math>\left( \begin{matrix}E^*\\ p^*_{x}\\p^*_{y}\\ p^*_{z}\end{matrix} \right)=\left(γ00βγ01000010βγ00γ \right) . \left( \begin{matrix}E^'\\ p^'_{x} \\ p^'_{y} \\ p^'_{z}\end{matrix} \right)</math></center>
+
<center><math>\left( \begin{matrix}E^*_{1}+E^*_{2}\\ p_{1(x)}^*+p_{2(x)}^* \\ p_{1(y)}^*+p_{2(y)}^* \\ p_{1(z)}^*+p_{2(z)}^*\end{matrix} \right)=\left(γ00βγ01000010βγ00γ \right) . \left( \begin{matrix}E_{1}^'+E_{2}^'\\ p_{1(x)}^'+p_{2(x)}^' \\ p_{1(y)}^'+p_{2(y)}^' \\ p_{1(z)}^'+p_{2(z)}^'\end{matrix} \right)</math></center>
 +
 
 +
 
 +
 
 +
<center><math>\left( \begin{matrix}E^*_{1}+E^*_{2}\\ 0 \\ 0 \\ 0\end{matrix} \right)=\left(γ00βγ01000010βγ00γ \right) . \left( \begin{matrix}E^'\\ p_{x}^' \\ p_{y}^' \\ p_{z}^'\end{matrix} \right)</math></center>
 +
 
 +
By the definition of the CM Frame we know
 +
 
  
  
 
<center><math>\Longrightarrow\begin{cases}
 
<center><math>\Longrightarrow\begin{cases}
E'=\gamma E^*+\beta \gamma p^*_{z} \\
+
E_2^*=\gamma(E_{2}^'+m)-\beta \gamma p_{2(z)}^' \\
p'_{z}=\beta \gamma E^*+ \gamma p^*_{z}
+
p^*_{x}=p^'_{x}=0 \\
 +
p^*_{y}=p^'_{y}=0 \\
 +
p^*_{2(z)}=-\beta \gamma(E_{2}^'+m)+\gamma p_{2(z)}^'
 
\end{cases}</math></center>
 
\end{cases}</math></center>
 +
 +
 +
 +
<center><math>\Longrightarrow \begin{cases}
 +
p_{1(x)}^'=-p_{2(x)}^' \\
 +
p_{1(y)}^'=-p_{2(y)}^'
 +
\end{cases}</math></center>
 +
 +
 +
 +
<center><math>\vec {p}\, ^*=\vec {p_1}^*+\vec {p_2}^*=0 \Longrightarrow \vec {p_1}^*=-\vec {p_2}^* </math></center>
 +
 +
 +
 +
<center><math>E^*=\sqrt{(E_{1}^'+E_{2}^')^2-(\vec{p_{1}}^'+\vec {p_{2}}^')^2}</math></center>
 +
 +
 +
Using the relativistic definition of total energy:
 +
 +
<center><math>E^2 \equiv p^2+m^2</math></center>
 +
 +
 +
<center><math>E_1^*=\sqrt{p_1^{*2}+m^2}</math></center>
 +
 +
 +
 +
{| class="wikitable" align="center"
 +
| style="background: gray"      | <math>E_1^*=\sqrt{p_2^{*2}+m^2}=\sqrt{(-p_1)^{*2}+m^2}=\sqrt{p_1^{*2}+m^2}</math>
 +
|}
 +
 +
 +
<center><math>\therefore E^*=E_1^*+E_2^* \Longrightarrow E_1^*=E_2^*</math></center>
 +
 +
Since the energies are equal, we use this fact to find the momenta
 +
 +
 +
{| class="wikitable" align="center"
 +
| style="background: gray"      | <math>|p_1^*|=|p_2^*|=\sqrt{E_1^{*2}-m^{*2}}</math>
 +
|}
 +
 +
===Moller electron Center of Mass Frame===
 +
 +
Relativistically, the x and y components remain the same in the conversion from the Lab frame to the Center of Mass frame, since the direction of motion is only in the z direction.
 +
 +
 +
 +
{| class="wikitable" align="center"
 +
| style="background: gray"      | <math>p^*_{2(x)}\Leftrightarrow p_{2(x)}'</math>
 +
|}
 +
 +
 +
{| class="wikitable" align="center"
 +
| style="background: gray"  | <math>p^*_{2(y)}\Leftrightarrow p_{2(y)}'</math>
 +
|}
 +
 +
 +
 +
{| class="wikitable" align="center"
 +
| style="background: gray"  | <math>p^*_{2(z)}=\sqrt {(p^*_2)^2-(p^*_{2(x)})^2-(p^*_{2(y)})^2}</math>
 +
|}
 +
 +
 +
 +
 +
<center>[[File:xz_lab.png | 400 px]]</center>
 +
<center>'''Figure 2: Definition of Moller electron variables in the Lab Frame in the x-z plane.'''</center>
 +
 +
 +
<center><math>\theta '_2\equiv \arccos \left(\frac{p^'_{2(z)}}{p^'_{2}}\right)</math></center>
 +
 +
Following the same geometry as for the Lab frame,
 +
 +
 +
{| class="wikitable" align="center"
 +
| style="background: gray"  | <math>\Longrightarrow \theta ^*_2=\arccos \left(\frac{p^*_{2(z)}}{p^*_{2}}\right)</math>
 +
|}
 +
 +
===Electron Center of Mass Frame===
 +
Relativistically, the x, y, and z components have the same magnitude, but opposite direction, in the conversion from the Moller electron's Center of Mass frame to the electron's Center of Mass frame.
 +
 +
 +
 +
{| class="wikitable" align="center"
 +
| style="background: gray"      | <math>p^*_{2(x)}= -p^*_{1(x)}</math>
 +
|}
 +
 +
 +
{| class="wikitable" align="center"
 +
| style="background: gray"  | <math>p^*_{2(y)}= -p^*_{1(y)}</math>
 +
|}
 +
 +
 +
 +
{| class="wikitable" align="center"
 +
| style="background: gray"  | <math>p^*_{2(z)}=-p^*_{1(z)}</math>
 +
|}
 +
 +
where previously it was shown
 +
 +
{| class="wikitable" align="center"
 +
| style="background: gray"      | <math>|p^*_{1}|\equiv |p^*_{2}|</math>
 +
|}
 +
 +
 +
 +
 +
 +
{| class="wikitable" align="center"
 +
| style="background: gray"      | <math>E^*_{1}\equiv E^*_{2}</math>
 +
|}
 +
 +
 +
 +
 +
{| class="wikitable" align="center"
 +
| style="background: gray"      | <math>\theta_{1}^*=\pi-\theta_{1}^*</math>
 +
|}
 +
 +
===Determing Angles===
 +
 +
<center>[[File:xy_lab.png | 400 px]]</center>
 +
<center>'''Figure 3: Definition of Moller electron variables in the Lab Frame in the x-y plane.'''</center>
 +
 +
 +
<center><math>\phi '_2\equiv \arccos \left( \frac{p^'_{2(x) Lab}}{p^'_{2(xy)}} \right)</math></center>
 +
 +
 +
<center>where <math>p_{2(xy)}^'=\sqrt{(p_{2(x)}^')^2+(p^'_{2(y)})^2}</math></center>
 +
 +
 +
<center><math>(p^'_{2(xy)})^2=(p^'_{2(x)})^2+(p^'_{2(y)})^2</math></center>
 +
 +
 +
<center>and using <math>p^2=p_{(x)}^2+p_{(y)}^2+p_{(z)}^2</math></center>
 +
 +
 +
<center>this gives <math>(p^'_{2})^2=(p^'_{2(xy)})^2+(p^'_{2(z)})^2</math></center>
 +
 +
 +
<center><math>\Longrightarrow (p'_{2})^2-(p'_{2(z)})^2 = (p'_{2(xy)})^2</math></center>
 +
 +
 +
<center><math>\Longrightarrow p_{2(xy)}^'=\sqrt{(p^'_{2})^2-(p^'_{2(z)})^2}</math></center>
 +
 +
 +
<center>which gives<math>\phi '_2 = \arccos \left( \frac{p_{2(x)}'}{\sqrt{p_{2}^{'\ 2}-p_{2(z)}^{'\ 2}}}\right)</math></center>
 +
 +
{| class="wikitable" align="center"
 +
| style="background: gray"      | <math>\Longrightarrow p_{2(x)}'=\sqrt{p_{2}^{'\ 2}-p_{2(z)}^{'\ 2}} \cos(\phi)</math>
 +
|}
 +
 +
 +
<center>Similarly, using <math>p_{2}^2=p_{2(x)}^2+p_{2(y)}^2+p_{2(z)}^2</math></center>
 +
 +
 +
<center><math>\Longrightarrow p_{2}^{'\ 2}-p_{2(x)}^{'\ 2}-p_{2(z)}^{'\ 2}=p_{2(y)}^{'\ 2}</math></center>
 +
 +
{| class="wikitable" align="center"
 +
| style="background: gray"      | <math>p_{2(y)}'=\sqrt{p_{2}^{'\ 2}-p_{2(x)}^{'\ 2}-p_{2(z)}^{'\ 2}}</math>
 +
|}
 +
 +
====<math>p_{x}</math> and <math>p_{y}</math> results based on <math>\phi</math>====
 +
Checking on the sign from the cosine results for <math>\phi '_2</math>
 +
 +
 +
We have the limiting range that <math>\phi</math> must fall within:
 +
{| class="wikitable" align="center"
 +
| style="background: grey"      | <math>-\pi \le \phi '_2 \le \pi\ Radians</math>
 +
|}
 +
 +
<center>[[File:xy_plane.png | 400px]]</center>
 +
 +
Examining the signs of the components which make up the angle <math>\phi</math> in the 4 quadrants which make up the xy plane:
 +
 +
{| class="wikitable" align="center"
 +
| style="background: red"      | <math>For\ 0 \ge \phi '_2 \ge \frac{-\pi}{2}\ Radians</math>
 +
|-
 +
| <center>p<sub>x</sub>=POSITIVE</center>
 +
|-
 +
| <center>p<sub>y</sub>=NEGATIVE</center>
 +
|}
 +
 +
{| class="wikitable" align="center"
 +
| style="background: red"      | <math>For\ 0 \le \phi '_2 \le \frac{\pi}{2}\ Radians</math>
 +
|-
 +
| <center>p<sub>x</sub>=POSITIVE</center>
 +
|-
 +
| <center>p<sub>y</sub>=POSITIVE</center>
 +
|}
 +
 +
{| class="wikitable" align="center"
 +
| style="background: red"      | <math>For\ \frac{-\pi}{2} \ge \phi '_2 \ge -\pi\ Radians</math>
 +
|-
 +
| <center>p<sub>x</sub>=NEGATIVE</center>
 +
|-
 +
| <center>p<sub>y</sub>=NEGATIVE</center>
 +
|}
 +
 +
{| class="wikitable" align="center"
 +
| style="background: red"      | <math>For\ \frac{\pi}{2} \le \phi '_2 \le \pi\ Radians</math>
 +
|-
 +
|<center>p<sub>x</sub>=NEGATIVE</center>
 +
|-
 +
| <center>p<sub>y</sub>=POSITIVE</center>
 +
|}
 +
 +
===Partial Check===
 +
[[Partial Check on Kinematics V2 | Partial Check]]
  
 
=Alter Phi Angles=
 
=Alter Phi Angles=
 +
 +
Using the fact that
 +
 +
<center><math>\cos{\phi} \equiv \frac{p_x}{\sqrt{p^2-p_z^2}}</math></center>
 +
 +
 +
<center><math>\Longrightarrow \sqrt{p^2-p_z^2}=\frac{p_x}{\cos{\phi}}=constant</math></center>
 +
 +
 +
We can simply use the expression
 +
 +
<center><math>\frac{p_x}{\cos{\phi}}=\frac{p_x'}{cos{\left(\phi+\delta \phi\right)}}</math></center>
 +
 +
 +
 +
<center><math>\Longrightarrow p_x'=\frac{p_x \times \cos{\left(\phi+\delta \phi\right)}}{\cos{\phi}}</math></center>
 +
 +
 +
Then, using
 +
 +
<center><math>\sqrt{p^2-p_z^2}=\sqrt{p_x^2+p_y^2}</math></center>
 +
 +
 +
<center><math>\Longrightarrow p_y'=\sqrt{p^2-p_z^2-p_x^{'2}}</math></center>
  
 
=Run for Necessary Amount to match Cross Section=
 
=Run for Necessary Amount to match Cross Section=
 +
<center>[[File:MolThetaNH3.png‎]]</center>
 +
 +
Using the above plot for the target material, we can find the relative amount that each Theta angle should observe for this process which gives a known Moller differential cross section.
 +
 +
 +
{| class="wikitable" align="center" border=1
 +
|-
 +
! Theta (degrees)
 +
! Number of events
 +
 +
|-
 +
| 35
 +
| 130
 +
 +
|-
 +
| 30
 +
| 120
 +
 +
|-
 +
| 25
 +
| 115
 +
 +
|-
 +
| 20
 +
| 100
 +
 +
|-
 +
| 15
 +
| 90
 +
 +
|-
 +
| 12
 +
| 70
 +
 +
|-
 +
| 10
 +
| 60
 +
 +
|-
 +
| 8
 +
| 40
 +
|}
 +
 +
We can set up conditional statements to check what range the Theta angle falls in, then by dividing
 +
 +
<center><math>\Delta \phi=\frac {2\pi}{number\ of\ events}</math></center>
 +
 +
we should find the change in phi needed to give an evenly distributed distribution around the xy plane for a given Theta angle.
 +
 +
 +
Starting with a data file of momentum components constructed using awk as described above
 +
 +
<center>[[File:Screen_Shot_2016-02-07_at_3.52.37_PM.png | Starting point]]</center>
 +
 +
A program was written to rotate the phi angle as described above.  The changing x and y components for this distribution can be seen with
 +
 +
<center>[[File:xy.png]]</center>
 +
 +
Lastly a LUND file was written that was 643360680 lines in length, which equates to 214453560 entries.  This was divided into 8579 file parts of 75000 each.  The first set from the original data set is shown below.  To make sure the full 2 pi is covered, the rotation starts in the 1st quadrant.
 +
 +
<pre>split -a 4 -d -l 75000 Extra_Phi.LUND Phi_Parts_</pre>
 +
 +
 +
<center>[[File:part1of8579.png]]</center>
 +
 +
 +
----
 +
[[DV_MollerTrackRecon#Moller_events_No_Solenoid | Back to Recon ]]

Latest revision as of 00:43, 9 February 2016

Setup

Since we want to run for a evenly spaced energy range for Moller electrons, we will need to use some of the scattered electrons to help cover this range. A Moller scattering data file of 1E7 events has no Moller electrons with momentum over 5500 MeV. Since momentum is conserved, and the data is verified kinematicly verified, we cannot simply "switch" the data. This data can be altered to have a certain number of different phi values for each energy to match the Moller cross section. This data can then be written to a LUND file, and compared to the previous calculations which did not factor in loss of initial energy.

Prepare Data

Using the existing Moller scattering data from a GEANT simulation of 4E7 incident electrons, a file of just scattered momentum components can be constructed using:

awk '{print $9, $10, $11, $16, $17, $18}' MollerScattering_NH3_Large.dat > Just_Scattered_Momentum.dat

Transfer to CM Frame

Center of Mass Frame

4-Momentum Invariants

CM.png
Figure 1: Definition of variables in the Center of Mass Frame


Starting with the definition for the total relativistic energy:


E2p2c2+m2c4


E2p2c2=(mc2)2

Since we can assume that the frame of reference is an inertial frame, it moves at a constant velocity, the mass should remain constant.


dpdt=0d(mv)dt=c dmdtdmdt=0


m=const


We can use 4-momenta vectors, i.e. P(Epxpypz)=(Ep) ,with c=1, to describe the variables in the CM Frame.


Using the fact that the scalar product of a 4-momenta with itself,


P1P1=PμgμνPν=(Epxpypz)(1000010000100001)(Epxpypz)


P1P1=E1E1p1p1=m21=s


is invariant.


Using this notation, the sum of two 4-momenta forms a 4-vector as well

P1+P2=(E1+E2p1+p2)=P

The length of this four-vector is an invariant as well

P2=(P1+P2)2=(E1+E2)2(p1+p2)2=(m1+m2)2=s

Equal masses

For incoming electrons moving only in the z-direction, we can write


P1+P2=(E1+E200p1(z)+p2(z))=P



We can perform a Lorentz transformation to the Center of Mass frame, with zero total momentum


(E1+E2000)=(γ00βγ01000010βγ00γ).(E1+E200p1(z)+p2(z))

Without knowing the values for gamma or beta, we can utalize the fact that lengths of the two 4-momenta are invariant

s=P2=(E1+E2)2(p 1+p 2)2=(m1+m2)2


s=P2=(E1+E2)2(p1+p2)2=(m1+m2)2


This gives,

(m1+m2)2=(m1+m2)2


Using the fact that

{m1=m2m1=m2

since the rest mass energy of the electrons remains the same in inertial frames.


Substituting, we find

(m1+m1)2=(m1+m1)2


2m1=2m1


m1=m1


m1=m1 ;m2=m2


This confirms that the mass remains constant between the frames of reference.



Total Energy in CM

Setting the lengths of the 4-momenta equal to each other,

P2=P2


we can use this for the collision of two particles of mass m. Since the total momentum is zero in the Center of Mass frame, we can express total energy in the center of mass frame as

(E^*_{1}+E^*_{2})^2-(\vec p\ ^*_{1}+\vec p\ ^*_{2})^2=s=(E_{1}^'+E_{2}^')^2-(\vec{p_{1}}^'+\vec {p_{2}}^')^2


(E^*)^2-(\vec p\ ^*)^2=(E_{1}^'+E_{2}^')^2-(\vec{p_{1}}^'+\vec {p_{2}}^')^2


(E^*)^2=(E_{1}^'+E_{2}^')^2-(\vec{p_{1}}^'+\vec {p_{2}}^')^2


E^*=\sqrt{(E_{1}^'+E_{2}^')^2-(\vec{p_{1}}^'+\vec {p_{2}}^')^2}


\left( \begin{matrix}E^*_{1}+E^*_{2}\\ p_{1(x)}^*+p_{2(x)}^* \\ p_{1(y)}^*+p_{2(y)}^* \\ p_{1(z)}^*+p_{2(z)}^*\end{matrix} \right)=\left(\begin{matrix}\gamma & 0 & 0 & -\beta \gamma\\0 & 1 & 0 & 0 \\ 0 & 0 & 1 &0 \\ -\beta \gamma & 0 & 0 & \gamma \end{matrix} \right) . \left( \begin{matrix}E_{1}^'+E_{2}^'\\ p_{1(x)}^'+p_{2(x)}^' \\ p_{1(y)}^'+p_{2(y)}^' \\ p_{1(z)}^'+p_{2(z)}^'\end{matrix} \right)


\left( \begin{matrix}E^*_{1}+E^*_{2}\\ 0 \\ 0 \\ 0\end{matrix} \right)=\left(\begin{matrix}\gamma & 0 & 0 & -\beta \gamma\\0 & 1 & 0 & 0 \\ 0 & 0 & 1 &0 \\ -\beta \gamma & 0 & 0 & \gamma \end{matrix} \right) . \left( \begin{matrix}E^'\\ p_{x}^' \\ p_{y}^' \\ p_{z}^'\end{matrix} \right)

By the definition of the CM Frame we know


\Longrightarrow\begin{cases}
E_2^*=\gamma(E_{2}^'+m)-\beta \gamma p_{2(z)}^' \\
p^*_{x}=p^'_{x}=0 \\
p^*_{y}=p^'_{y}=0 \\
p^*_{2(z)}=-\beta \gamma(E_{2}^'+m)+\gamma p_{2(z)}^'
\end{cases}


\Longrightarrow \begin{cases}
p_{1(x)}^'=-p_{2(x)}^' \\
p_{1(y)}^'=-p_{2(y)}^' 
\end{cases}


p=p1+p2=0p1=p2


E^*=\sqrt{(E_{1}^'+E_{2}^')^2-(\vec{p_{1}}^'+\vec {p_{2}}^')^2}


Using the relativistic definition of total energy:

E2p2+m2


E1=p21+m2


E1=p22+m2=(p1)2+m2=p21+m2


E=E1+E2E1=E2

Since the energies are equal, we use this fact to find the momenta


|p1|=|p2|=E21m2

Moller electron Center of Mass Frame

Relativistically, the x and y components remain the same in the conversion from the Lab frame to the Center of Mass frame, since the direction of motion is only in the z direction.


p2(x)p2(x)


p2(y)p2(y)


p2(z)=(p2)2(p2(x))2(p2(y))2



Xz lab.png
Figure 2: Definition of Moller electron variables in the Lab Frame in the x-z plane.


\theta '_2\equiv \arccos \left(\frac{p^'_{2(z)}}{p^'_{2}}\right)

Following the same geometry as for the Lab frame,


θ2=arccos(p2(z)p2)

Electron Center of Mass Frame

Relativistically, the x, y, and z components have the same magnitude, but opposite direction, in the conversion from the Moller electron's Center of Mass frame to the electron's Center of Mass frame.


p2(x)=p1(x)


p2(y)=p1(y)


p2(z)=p1(z)

where previously it was shown

|p1||p2|



E1E2



θ1=πθ1

Determing Angles

Xy lab.png
Figure 3: Definition of Moller electron variables in the Lab Frame in the x-y plane.


\phi '_2\equiv \arccos \left( \frac{p^'_{2(x) Lab}}{p^'_{2(xy)}} \right)


where p_{2(xy)}^'=\sqrt{(p_{2(x)}^')^2+(p^'_{2(y)})^2}


(p^'_{2(xy)})^2=(p^'_{2(x)})^2+(p^'_{2(y)})^2


and using p2=p2(x)+p2(y)+p2(z)


this gives (p^'_{2})^2=(p^'_{2(xy)})^2+(p^'_{2(z)})^2


(p2)2(p2(z))2=(p2(xy))2


\Longrightarrow p_{2(xy)}^'=\sqrt{(p^'_{2})^2-(p^'_{2(z)})^2}


which givesϕ2=arccos(p2(x)p 22p 22(z))
p2(x)=p 22p 22(z)cos(ϕ)


Similarly, using p22=p22(x)+p22(y)+p22(z)


p 22p 22(x)p 22(z)=p 22(y)
p2(y)=p 22p 22(x)p 22(z)

px and py results based on ϕ

Checking on the sign from the cosine results for ϕ2


We have the limiting range that ϕ must fall within:

πϕ2π Radians
Xy plane.png

Examining the signs of the components which make up the angle ϕ in the 4 quadrants which make up the xy plane:

For 0ϕ2π2 Radians
px=POSITIVE
py=NEGATIVE
For 0ϕ2π2 Radians
px=POSITIVE
py=POSITIVE
For π2ϕ2π Radians
px=NEGATIVE
py=NEGATIVE
For π2ϕ2π Radians
px=NEGATIVE
py=POSITIVE

Partial Check

Partial Check

Alter Phi Angles

Using the fact that

cosϕpxp2p2z


p2p2z=pxcosϕ=constant


We can simply use the expression

pxcosϕ=pxcos(ϕ+δϕ)


px=px×cos(ϕ+δϕ)cosϕ


Then, using

p2p2z=p2x+p2y


py=p2p2zp2x

Run for Necessary Amount to match Cross Section

MolThetaNH3.png

Using the above plot for the target material, we can find the relative amount that each Theta angle should observe for this process which gives a known Moller differential cross section.


Theta (degrees) Number of events
35 130
30 120
25 115
20 100
15 90
12 70
10 60
8 40

We can set up conditional statements to check what range the Theta angle falls in, then by dividing

Δϕ=2πnumber of events

we should find the change in phi needed to give an evenly distributed distribution around the xy plane for a given Theta angle.


Starting with a data file of momentum components constructed using awk as described above

Starting point

A program was written to rotate the phi angle as described above. The changing x and y components for this distribution can be seen with

Xy.png

Lastly a LUND file was written that was 643360680 lines in length, which equates to 214453560 entries. This was divided into 8579 file parts of 75000 each. The first set from the original data set is shown below. To make sure the full 2 pi is covered, the rotation starts in the 1st quadrant.

split -a 4 -d -l 75000 Extra_Phi.LUND Phi_Parts_


Part1of8579.png



Back to Recon