Difference between revisions of "Scattering Cross Section"

From New IAC Wiki
Jump to navigation Jump to search
Line 96: Line 96:
 
This allows us to express the term:
 
This allows us to express the term:
  
<center><math>\frac{d(p^*\theta^*\phi^*)}{d(p^*_xp^*_yp^*_z)}=\biggl[(\frac{d(p^*_xp^*_yp^*_z)}{d(p^*\theta^*\phi^*)}\biggr]^{-1}=\biggl[(\frac{d(p^*\sin{\theta^*}\cos{\phi^*}p^*\sin{\theta^*}\sin{\phi^*}p^*\cos{\theta^*})}{dp^*d\theta^*d\phi^*)}\biggr]^{-1}</math></center>
+
<center><math>\frac{d(p^*\theta^*\phi^*)}{d(p^*_xp^*_yp^*_z)}=\biggl[\frac{d(p^*_xp^*_yp^*_z)}{d(p^*\theta^*\phi^*}\biggr]^{-1}=\biggl[\frac{d(p^*\sin{\theta^*}\cos{\phi^*}p^*\sin{\theta^*}\sin{\phi^*}p^*\cos{\theta^*}}{dp^*d\theta^*d\phi^*)}\biggr]^{-1}</math></center>
  
  
<center><math>=\biggl[(\frac{dp^{*3}\cos{\theta^*}^2\sin{\phi^*}\cos{\phi^*}\sin{\theta^*})}{dp^*d\theta^*d\phi^*)}\biggr]^{-1}</math></center>
+
<center><math>=\biggl[\frac{dp^{*3}\cos{\theta^*}^2\sin{\phi^*}\cos{\phi^*}\sin{\theta^*}}{dp^*d\theta^*d\phi^*)}\biggr]^{-1}</math></center>
  
  
 
<center><math>\left( E1+E2p1(x)+p2(x)p1(y)+p2(y)p1(z)+p2(z)
\right)=\left(γ00βγ01000010βγ00γ
\right) . \left( E1+E2p1(x)+p2(x)p1(y)+p2(y)p1(z)+p2(z)
\right)</math></center>
 
<center><math>\left( E1+E2p1(x)+p2(x)p1(y)+p2(y)p1(z)+p2(z)
\right)=\left(γ00βγ01000010βγ00γ
\right) . \left( E1+E2p1(x)+p2(x)p1(y)+p2(y)p1(z)+p2(z)
\right)</math></center>

Revision as of 03:13, 3 February 2016

Scattering Cross Section

Scattering.png


dσdΩ=(number of particles scattered/seconddΩ)(number of incoming particles/secondcm2)=dNLdΩ=differential scattering cross section


where dΩ=sinθdθdϕ


σ=πθ=02πϕ=0(dσdΩ) sinθdθdϕ=NLtotal scattering cross section

Since this is just a ratio of detected particles to total particles, this gives the cross section as a relative probablity of a scattering, or reaction, to occur.

Transforming Cross Section Between Frames

Transforming the cross section between two different frames of reference has the condition that the quantity must be equal in both frames. This is due to the fact that

σ=NL=constant number


This makes the total cross section a Lorentz invariant in that it is not effected by any relativistic transformations

 σCM=σLab


This implies that the number of particles going into the solid-angle element d ΩLab and having a momentum between pLab and pLab+dpLabbe the same as the number going into the corresponding solid-angle element CM and having a corresponding momentum between pCM and pCM+dpCM


d2σLabdpLabdΩLabdpLabdΩLab=d2σCMdpCMdΩCMdpCMdΩCM


where dΩ=sinθdθdϕ


d2σLabdpLabdΩLabdpLabsinθLabdθLabdϕLab=d2σCMdpCMdΩCMdpCMsinθCMdθCMdϕCM


As shown earlier,

ϕLab=ϕCM


 dϕLab=dϕCM


d2σLabdpLabdΩLabdpLabsinθLabdθLab=d2σCMdpCMdΩCMdpCMsinθCMdθCM


We can use the fact that

sinθ dθ=d(cosθ)


d2σLabdpLabdΩLabdpLabd(cosθLab)=d2σCMdpCMdΩCMdpCMd(cosθCM)



d2σLabdpLabdΩLab=d2σCMdpCMdΩCMdpCMd(cosθCM)dpLabd(cosθLab)


d2σLabdpLabdΩLab=d2σCMdpCMdΩCMd(pCMcosθCM)d(pLabcosθLab)


We can use the chain rule to find the transformation term on the right hand side:

d(pcosθ)d(pθϕ)d(pθϕ)d(pxpypz)d(pxpypz)d(pxpypz)d(pxpypz)d(pθϕ)d(pθϕ)d(pcosθ)=d(pcosθ)d(pcosθ)


d(pcosθ)d(pθϕ)=dpsinθdθdϕdpdθdϕ=sinθ


Using the conversion of cartesian to spherical coordinates we know:

{px=psinθcosϕpy=psinθsinϕpz=pcosθ



This allows us to express the term:

d(pθϕ)d(pxpypz)=[d(pxpypz)d(pθϕ]1=[d(psinθcosϕpsinθsinϕpcosθdpdθdϕ)]1


=[dp3cosθ2sinϕcosϕsinθdpdθdϕ)]1


(E1+E2p1(x)+p2(x)p1(y)+p2(y)p1(z)+p2(z))=(γ00βγ01000010βγ00γ).(E1+E2p1(x)+p2(x)p1(y)+p2(y)p1(z)+p2(z))