Difference between revisions of "Scattering Cross Section"

From New IAC Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
=Scattering Cross Section=
 
=Scattering Cross Section=
 +
 +
<center>[[File:Scattering.png | 400 px]]</center>
 +
  
 
<center><math>\frac{d\sigma}{d\Omega} = \frac{\left(\frac{number\ of\ particles\ scattered/second}{d\Omega}\right)}{\left(\frac{number\ of\ incoming\ particles/second}{cm^2}\right)}=\frac{dN}{\mathcal L\, d\Omega} =differential\ scattering\ cross\ section</math></center>
 
<center><math>\frac{d\sigma}{d\Omega} = \frac{\left(\frac{number\ of\ particles\ scattered/second}{d\Omega}\right)}{\left(\frac{number\ of\ incoming\ particles/second}{cm^2}\right)}=\frac{dN}{\mathcal L\, d\Omega} =differential\ scattering\ cross\ section</math></center>
Line 5: Line 8:
  
 
<center><math>where\ d\Omega=\sin{\theta}\,d\theta\,d\phi</math></center>
 
<center><math>where\ d\Omega=\sin{\theta}\,d\theta\,d\phi</math></center>
 
<center>[[File:Scattering.png | 400 px]]</center>
 
 
  
  

Revision as of 21:12, 2 February 2016

Scattering Cross Section

Scattering.png


dσdΩ=(number of particles scattered/seconddΩ)(number of incoming particles/secondcm2)=dNLdΩ=differential scattering cross section


where dΩ=sinθdθdϕ




and σ=πθ=02πϕ=0(dσdΩ) sinθdθdϕtotal scattering cross section

Transforming Cross Section Between Frames

Transforming the cross section between two different frames of reference has the condition that the quantity must be equal in both frames.


σCM=σLab

This is a Lorentz invariant.


dσ=Ilab(θlab, ϕlab)dΩlab=ICM(θCM, ϕCM)dΩCM

Since the number of particles per second going into the detector is the same for both frames. (Only the z component of the momentum and the Energy are Lorentz transformed)


This is that the number of particles going into the solid-angle element d\Omega and having a moentum between p and p+dp be the same as the number going into the correspoiding solid-angle element d\Omega^* and having a corresponding momentum between p^* and p*+dp*


(Epxpypz)=(γ00βγ01000010βγ00γ).(E1+E2p1(x)+p2(x)p1(y)+p2(y)p1(z)+p2(z))