Difference between revisions of "Variables Used in Elastic Scattering"
Jump to navigation
Jump to search
where
represents the 4-Momentum Vector in the CM frame and
represents the 4-Momentum Vector in the initial Lab frame
where
represents the 4-Momentum Vector in the final Lab frame
Line 115: | Line 115: | ||
− | <center><math>\left({\mathbf P_1}- {\mathbf P_1^'}\right)^2=\left( m_1^2-2\left((E^2-E_2E_2^')-\vec p_1\cdot \vec p_1^'\right)+ m_1^{'2}\right)=\left({\mathbf P_a}\right)^2=s</math></center> | + | <center><math>\left({\mathbf P_1}- {\mathbf P_1^'}\right)^2=\left( m_1^2-2\left((E^2-EE_2-EE_2^'+E_2E_2^')-\vec p_1\cdot \vec p_1^'\right)+ m_1^{'2}\right)=\left({\mathbf P_a}\right)^2=s</math></center> |
− | <center><math>\left({\mathbf P_1}- {\mathbf P_2^'}\right)^2=\left( m_1^2-2\left((E^2-E_2E_1^')-\vec p_1\cdot \vec p_2^'\right)+ m_2^{'2}\right)=\left({\mathbf P_b}\right)^2=s</math></center> | + | <center><math>\left({\mathbf P_1}- {\mathbf P_2^'}\right)^2=\left( m_1^2-2\left((E^2-EE_2-EE_1^'+E_2E_1^')-\vec p_1\cdot \vec p_2^'\right)+ m_2^{'2}\right)=\left({\mathbf P_b}\right)^2=s</math></center> |
− | <center><math>\left({\mathbf P_2}- {\mathbf P_1^'}\right)^2=\left( m_2^2-2\left((E^2-E_1E_2^')-\vec p_2\cdot \vec p_1^'\right)+ m_1^{'2}\right)=\left({\mathbf P_c}\right)^2=s</math></center> | + | <center><math>\left({\mathbf P_2}- {\mathbf P_1^'}\right)^2=\left( m_2^2-2\left((E^2-EE_1-EE_2^'+E_1E_2^')-\vec p_2\cdot \vec p_1^'\right)+ m_1^{'2}\right)=\left({\mathbf P_c}\right)^2=s</math></center> |
− | <center><math>\left({\mathbf P_2}- {\mathbf P_2^'}\right)^2=\left( m_2^2-2\left((E^2-E_1E_1^')-\vec p_2\cdot \vec p_2^'\right)+ m_2^{'2}\right)=\left({\mathbf P_d}\right)^2=s</math></center> | + | <center><math>\left({\mathbf P_2}- {\mathbf P_2^'}\right)^2=\left( m_2^2-2\left((E^2-EE_1-EE_1^'+E_1E_1^')-\vec p_2\cdot \vec p_2^'\right)+ m_2^{'2}\right)=\left({\mathbf P_d}\right)^2=s</math></center> |
=Mandelstam Representation= | =Mandelstam Representation= | ||
[[File:Mandelstam.png | 400 px]] | [[File:Mandelstam.png | 400 px]] |
Revision as of 22:24, 31 January 2016
Lorentz Invariant Quantities
Total 4-Momentums
As was shown earlier the scalar product of a 4-Momentum vector with itself ,
,
and the length of a 4-Momentum vector composed of 4-Momentum vectors,
,
are invariant quantities.
It was further shown that
which can be expanded to
New 4-Momentum Quantities
Working in just the Lab frame, we can form new 4-Momentum Vectors comprised of 4-Momenta in this frame, with
Using the algebraic fact
and the fact that the length of these 4-Momentum Vectors are invariant,
Using the fact that the scalar product of a 4-momenta with itself is invariant,
We can simiplify the expressions
Finding the cross terms,
This gives
Using the fact that energy is conserved in this elastic collision