Difference between revisions of "Variables Used in Elastic Scattering"
Jump to navigation
Jump to search
where
represents the 4-Momentum Vector in the CM frame and
represents the 4-Momentum Vector in the initial Lab frame
where
represents the 4-Momentum Vector in the final Lab frame
Line 83: | Line 83: | ||
<center><math>{\mathbf P_1}\cdot {\mathbf P^'}=\left(\begin{matrix} E\\ p_x \\ p_y \\ p_z \end{matrix} \right)\cdot \left( \begin{matrix}1 & 0 & 0 & 0\\0 & -1 & 0 & 0\\0 & 0 & -1 & 0\\0 &0 & 0 &-1\end{matrix} \right)\cdot \left(\begin{matrix} E' & p_x^' & p_y^' & p_z^' \end{matrix} \right)=E_1E_1^'-\vec p_1\cdot \vec p_1^' </math></center> | <center><math>{\mathbf P_1}\cdot {\mathbf P^'}=\left(\begin{matrix} E\\ p_x \\ p_y \\ p_z \end{matrix} \right)\cdot \left( \begin{matrix}1 & 0 & 0 & 0\\0 & -1 & 0 & 0\\0 & 0 & -1 & 0\\0 &0 & 0 &-1\end{matrix} \right)\cdot \left(\begin{matrix} E' & p_x^' & p_y^' & p_z^' \end{matrix} \right)=E_1E_1^'-\vec p_1\cdot \vec p_1^' </math></center> | ||
+ | |||
+ | This gives | ||
<center><math>\left({\mathbf P_1}- {\mathbf P_1^'}\right)^2=\left( m_1^2-2\left(E_1E_1^'-\vec p_1\cdot \vec p_1^'\right)+ m_1^{'2}\right)=\left({\mathbf P_a}\right)^2=s</math></center> | <center><math>\left({\mathbf P_1}- {\mathbf P_1^'}\right)^2=\left( m_1^2-2\left(E_1E_1^'-\vec p_1\cdot \vec p_1^'\right)+ m_1^{'2}\right)=\left({\mathbf P_a}\right)^2=s</math></center> | ||
Line 94: | Line 96: | ||
<center><math>\left({\mathbf P_2}- {\mathbf P_2^'}\right)^2=\left( m_2^2-2\left(E_2E_2^'-\vec p_2\cdot \vec p_2^'\right)+ m_2^{'2}\right)=\left({\mathbf P_d}\right)^2=s</math></center> | <center><math>\left({\mathbf P_2}- {\mathbf P_2^'}\right)^2=\left( m_2^2-2\left(E_2E_2^'-\vec p_2\cdot \vec p_2^'\right)+ m_2^{'2}\right)=\left({\mathbf P_d}\right)^2=s</math></center> | ||
+ | |||
+ | |||
+ | Using the relativistic expression for total energy | ||
+ | |||
+ | <center><math>E=\sqrt{p^2+m^2\right)}</math></center> | ||
+ | |||
+ | |||
+ | <center><math>\left({\mathbf P_1}- {\mathbf P_1^'}\right)^2=\left( m_1^2-2\left(\sqrt{p_1^2+m_1^2\right)}\sqrt{p_1^{'2}+m_1^{'2}\right)}-\vec p_1\cdot \vec p_1^'\right)+ m_1^{'2}\right)=\left({\mathbf P_a}\right)^2=s</math></center> | ||
+ | |||
+ | |||
+ | <center><math>\left({\mathbf P_1}- {\mathbf P_2^'}\right)^2=\left( m_1^2-2\left(\sqrt{p_1^2+m_1^2\right)}\sqrt{p_2^{'2}+m_2^{'2}\right)}-\vec p_1\cdot \vec p_2^'\right)+ m_2^{'2}\right)=\left({\mathbf P_b}\right)^2=s</math></center> | ||
+ | |||
+ | |||
+ | <center><math>\left({\mathbf P_2}- {\mathbf P_1^'}\right)^2=\left( m_2^2-2\left(\sqrt{p_2^2+m_2^2\right)}\sqrt{p_1^{'2}+m_1^{'2}\right)}-\vec p_2\cdot \vec p_1^'\right)+ m_1^{'2}\right)=\left({\mathbf P_c}\right)^2=s</math></center> | ||
+ | |||
+ | |||
+ | <center><math>\left({\mathbf P_2}- {\mathbf P_2^'}\right)^2=\left( m_2^2-2\left(\sqrt{p_2^2+m_2^2\right)}\sqrt{p_2^{'2}+m_2^{'2}\right)}-\vec p_2\cdot \vec p_2^'\right)+ m_2^{'2}\right)=\left({\mathbf P_d}\right)^2=s</math></center> | ||
=Mandelstam Representation= | =Mandelstam Representation= | ||
[[File:Mandelstam.png | 400 px]] | [[File:Mandelstam.png | 400 px]] |
Revision as of 21:56, 31 January 2016
Lorentz Invariant Quantities
Total 4-Momentums
As was shown earlier the scalar product of a 4-Momentum vector with itself ,
,
and the length of a 4-Momentum vector composed of 4-Momentum vectors,
,
are invariant quantities.
It was further shown that
which can be expanded to
New 4-Momentum Quantities
Working in just the Lab frame, we can form new 4-Momentum Vectors comprised of 4-Momenta in this frame, with
Using the algebraic fact
and the fact that the length of these 4-Momentum Vectors are invariant,
Using the fact that the scalar product of a 4-momenta with itself is invariant,
We can simiplify the expressions
Finding the cross terms,
This gives
Using the relativistic expression for total energy