Difference between revisions of "Variables Used in Elastic Scattering"

From New IAC Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
=Lorentz Invariant Quantities=
 
=Lorentz Invariant Quantities=
 +
==Total 4-Momentums==
 
As was [[DV_Calculations_of_4-momentum_components#4-Momentum_Invariants | shown earlier]] the scalar product of a 4-Momentum vector with itself ,
 
As was [[DV_Calculations_of_4-momentum_components#4-Momentum_Invariants | shown earlier]] the scalar product of a 4-Momentum vector with itself ,
 
<center><math>{\mathbf P_1}\cdot {\mathbf P^1}=E_1E_1-\vec p_1\cdot \vec p_1 =m_{1}^2=s</math></center> ,
 
<center><math>{\mathbf P_1}\cdot {\mathbf P^1}=E_1E_1-\vec p_1\cdot \vec p_1 =m_{1}^2=s</math></center> ,
Line 25: Line 26:
  
 
<center>''where'' <math>{\mathbf P^'}=({\mathbf P_1^'}+{\mathbf P_2^'})^2</math> ''represents the 4-Momentum Vector in the final Lab frame''</center>
 
<center>''where'' <math>{\mathbf P^'}=({\mathbf P_1^'}+{\mathbf P_2^'})^2</math> ''represents the 4-Momentum Vector in the final Lab frame''</center>
 +
 +
==New 4-Momentum Quantities==
  
 
=Mandelstam Representation=
 
=Mandelstam Representation=
  
 
[[File:Mandelstam.png | 400 px]]
 
[[File:Mandelstam.png | 400 px]]

Revision as of 19:40, 31 January 2016

Lorentz Invariant Quantities

Total 4-Momentums

As was shown earlier the scalar product of a 4-Momentum vector with itself ,

[math]{\mathbf P_1}\cdot {\mathbf P^1}=E_1E_1-\vec p_1\cdot \vec p_1 =m_{1}^2=s[/math]

,

and the length of a 4-Momentum vector composed of 4-Momentum vectors,

[math]{\mathbf P^2}=({\mathbf P_1}+{\mathbf P_2})^2=(E_1+E_2)^2-(\vec p_1 +\vec p_2 )^2=(m_1+m_2)^2=s[/math]

,

are invariant quantities.

It was further shown that

[math]{\mathbf P^*}^2={\mathbf P}^2[/math]


where [math]{\mathbf P^*}=({\mathbf P_1^*}+{\mathbf P_2^*})^2[/math] represents the 4-Momentum Vector in the CM frame


and [math]{\mathbf P}=({\mathbf P_1}+{\mathbf P_2})^2[/math] represents the 4-Momentum Vector in the initial Lab frame

which can be expanded to

[math]{\mathbf P^*}^2={\mathbf P}^2={\mathbf P^'}^2[/math]


where [math]{\mathbf P^'}=({\mathbf P_1^'}+{\mathbf P_2^'})^2[/math] represents the 4-Momentum Vector in the final Lab frame

New 4-Momentum Quantities

Mandelstam Representation

Mandelstam.png