Difference between revisions of "DV Calculations of 4-momentum components"

From New IAC Wiki
Jump to navigation Jump to search
Line 352: Line 352:
 
Finding the correct kinematic values starting from knowing the momentum of the Moller electron, <math>p^'_{2}</math> ,  in the Lab frame,
 
Finding the correct kinematic values starting from knowing the momentum of the Moller electron, <math>p^'_{2}</math> ,  in the Lab frame,
 
====xz Plane====
 
====xz Plane====
<center>[[File:xz_lab.png]]</center>
+
<center>[[File:xz_lab.png | 400 px]]</center>
 
<center>'''Figure 3: Definition of Moller electron variables in the Lab Frame in the x-z plane.'''</center>
 
<center>'''Figure 3: Definition of Moller electron variables in the Lab Frame in the x-z plane.'''</center>
  

Revision as of 23:51, 28 January 2016

Calculations of 4-momentum components

Initial Conditions

Lab Frame

Lab.png
Figure 1: Definition of variables in the Lab Frame


Begining with the assumption that the incoming electron, p1, has momentum of 11000 MeV in the positive z direction.


p1(z)p1=11000MeVˆz


We can also assume the Moller electron, p2, is initially at rest


p20


This gives the total energy in this frame as


EE1+E2


where,

Ep2+m2


This gives,

E(p1)2+(m1)2+m2


E(11000MeV)2+(.511MeV)2+.511MeV11000.511MeV

Center of Mass Frame

4-Momentum Invariants

CM.png
Figure 2: Definition of variables in the Center of Mass Frame


Starting with the definition for the total relativistic energy:


E2p2c2+m2c4


E2p2c2=(mc2)2

Since we can assume that the frame of reference is an inertial frame, it moves at a constant velocity, the mass should remain constant.


dpdt=0d(mv)dt=c dmdtdmdt=0


m=const


We can use 4-momenta vectors, i.e. P(Epxpypz)=(Ep) ,with c=1, to describe the variables in the CM Frame.


Using the fact that the scalar product of a 4-momenta with itself,


P1P1=PμgμνPν=(Epxpypz)(1000010000100001)(Epxpypz)


P1P1=E1E1p1p1=m21=s


is invariant.


Using this notation, the sum of two 4-momenta forms a 4-vector as well

P1+P2=(E1+E2p1+p2)=P

The length of this four-vector is an invariant as well

P2=(P1+P2)2=(E1+E2)2(p1+p2)2=(m1+m2)2=s

Equal masses

For incoming electrons moving only in the z-direction, we can write


P1+P2=(E1+E200p1(z)+p2(z))=P



We can perform a Lorentz transformation to the Center of Mass frame, with zero total momentum


(E1+E2000)=(γ00βγ01000010βγ00γ).(E1+E200p1(z)+p2(z))

Without knowing the values for gamma or beta, we can utalize the fact that lengths of the two 4-momenta are invariant

s=P2=(E1+E2)2(p 1+p 2)2=(m1+m2)2


s=P2=(E1+E2)2(p1+p2)2=(m1+m2)2


This gives,

(m1+m2)2=(m1+m2)2


Using the fact that

{m1=m2m1=m2

since the rest mass energy of the electrons remains the same in inertial frames.


Substituting, we find

(m1+m1)2=(m1+m1)2


2m1=2m1


m1=m1


m1=m1 ;m2=m2


This confirms that the mass remains constant between the frames of reference.



Total Energy in CM

Setting the lengths of the 4-momenta equal to each other,

P2=P2


we can use this for the collision of two particles of mass m. Since the total momentum is zero in the Center of Mass frame, we can express total energy in the center of mass frame as

(E1+E2)2(p 1+p 2)2=s=(E1+E2)2(p1+p2)2


(E)2(p )2=(E1+E2)2(p1+p2)2


(E)2=(E1+E2)2(p1+p2)2


E=(E1+E2)2(p1+p2)2


E=E21+2E1E2+E22p1.p2p1.p1p2.p1p2.p2


E=(E21p21)+(E22p22)+2E1E2p1.p2p2.p1


E=(E21p21)+(E22p22)+2E1E2p1p2cos(θ)p2p1cos(θ)


E=m21+m22+2E1E2p1p2cos(θ)p2p1cos(θ)


E=m21+m22+2E1E22p1p2cos(θ)


E=m21+m22+2E1E22p1p2cos(θ)


Using the relations βp/Ep=βE


E=2m2+2E1E2(1β1β2cos(θ))


where θ is the angle between the particles in the Lab frame.



In the frame where one particle (p2) is at rest


β2=0


p2=0


which implies,


E2=p22+m2=m



E=(2m(m+E1)1/2=(2(.511MeV)(.511MeV+(11000MeV)2+(.511MeV)2)1/2106.030760886MeV

where E1=p21+m211000MeV


Scattered and Moller Electron energies in CM

Inspecting the Lorentz transformation to the Center of Mass frame:


(E1+E2000)=(γ00βγ01000010βγ00γ).(E1+E200p1(z)+p2(z))


For the case of a stationary electron, this simplifies to:

(Epxpypz)=(γ00βγ01000010βγ00γ).(E1+m00p1(z)+0)


which gives,


{E=γ(E1+m)βγp1(z)pz=βγ(E1+m)+γp1(z)


Solving for β, with pz=0

βγ(E1+m)=γp1(z)


β=p1(E1+m)


Similarly, solving for γ by substituting in β


E=γ(E1+m)p1(E1+m)γp1(z)


E=γ(E1+m)2(E1+m)γ(p1(z))2(E1+m)


Using the fact that E=[(E1+E2)2(p1+p2)2]1/2


E=γE 2(E1+m)
γ=(E1+m)E



Using the relation

(E1+E2p1(x)+p2(x)p1(y)+p2(y)p1(z)+p2(z))=(γ00βγ01000010βγ00γ).(E1+m00p1(z)+0)


(E2p2(x)p2(y)p2(z))=(γ00βγ01000010βγ00γ).(m000)


{E2=γ(m)p2(z)=βγ(m)


{E2=(E1+m)E(m)p2(z)=p1(E1+m)(E1+m)E(m2)


{E2=(11000MeV+.511MeV)106.031MeV(.511MeV)53.015MeVp2(z)=11000MeV106.031MeV(.511MeV)53.013MeV


(E1p1(x)p1(y)p1(z))=(γ00βγ01000010βγ00γ).(E100p1(z))


{E1=γ(E1)βγp1(z)p1(z)=βγ(E1)+γp1(z)


{E1=(E1+m)E(E1)p1(z)(E1+m)(E1+m)Ep1(z)p1(z)=p1(E1+m)(E1+m)E(E1)+(E1+m)Ep1(z)


{E1=(11000MeV+.511MeV)106.031MeV(11000MeV)11000MeV106.031MeV11000MeV53.015MeVp1(z)=11000MeV106.031MeV(11000MeV)+(11000MeV+.511MeV)106.031MeV11000MeV53.013MeV


p1=(p1(x))2+(p1(y))2+(p1(z))2p1=p1(z)


p2=(p2(x))2+(p2(y))2+(p2(z))2p2=p2(z)


This gives the momenta of the particles in the center of mass to have equal magnitude, but opposite directions.



E=E1+E2=2m(m+E1)

Final Conditions

Moller electron Lab Frame

Finding the correct kinematic values starting from knowing the momentum of the Moller electron, p^'_{2} , in the Lab frame,

xz Plane

Xz lab.png
Figure 3: Definition of Moller electron variables in the Lab Frame in the x-z plane.
Using \theta '_2=\arccos \left(\frac{p^'_{2(z)}}{p^'_{2}}\right)


\Longrightarrow {p^'_{2(z)}=p^'_{2}\cos(\theta '_2)}


Checking on the sign resulting from the cosine function, we are limited to:

0θ2600θ21.046 Radians

Since,

\frac{p^'_{2(z)}}{p^'_{2}}=cos(\theta '_2)


\Longrightarrow p^'_{2(z)}\ should\ always\ be\ positive

xy Plane

Xy lab.png
Figure 4: Definition of Moller electron variables in the Lab Frame in the x-y plane.
Similarly, \phi '_2=\arccos \left( \frac{p^'_{2(x) Lab}}{p^'_{2(xy)}} \right)


where p_{2(xy)}^'=\sqrt{(p_{2(x)}^')^2+(p^'_{2(y)})^2}


(p^'_{2(xy)})^2=(p^'_{2(x)})^2+(p^'_{2(y)})^2


and using p2=p2(x)+p2(y)+p2(z)


this gives (p^'_{2})^2=(p^'_{2(xy)})^2+(p^'_{2(z)})^2


(p2)2(p2(z))2=(p2(xy))2


\Longrightarrow p_{2(xy)}^'=\sqrt{(p^'_{2})^2-(p^'_{2(z)})^2}


which givesϕ2=arccos(p2(x)p 22p 22(z))
p2(x)=p 22p 22(z)cos(ϕ)


Similarly, using p22=p22(x)+p22(y)+p22(z)


p 22p 22(x)p 22(z)=p 22(y)
p2(y)=p 22p 22(x)p 22(z)
px and py results based on ϕ

Checking on the sign from the cosine results for ϕ2


We have the limiting range that ϕ must fall within:

πϕ2π Radians
Xy plane.png

Examining the signs of the components which make up the angle ϕ in the 4 quadrants which make up the xy plane:

For 0ϕ2π2 Radians
px=POSITIVE
py=NEGATIVE
For 0ϕ2π2 Radians
px=POSITIVE
py=POSITIVE
For π2ϕ2π Radians
px=NEGATIVE
py=NEGATIVE
For π2ϕ2π Radians
px=NEGATIVE
py=POSITIVE

Moller electron Center of Mass Frame

Relativistically, the x and y components remain the same in the conversion from the Lab frame to the Center of Mass frame, since the direction of motion is only in the z direction.


p2(x)p2(x)


p2(y)p2(y)


p2(z)=(p2)2(p2(x))2(p2(y))2


Redefining the components in simpler terms, we use the fact that

EE1+E2
2E2=2m(m+E1)


E2=m(m+E1)2


p2=E22m2

Initially, before the collision in the CM frame, p2 was in the negative z direction. After the collision, the direction should reverse to the positive z direction. This same switching of the momentum direction alters p1 as well.


Alternatively, we can also use the relation,

sin(θ2)=(p2(x)p2)


p2 sin(θ2)=p2(x)


p2 sin(θ2)=p2(x)


However, p2(x)p2(x) Since only parallel components are altered in a Lorentz shift.


p2 sin(θ2)=p2 sin(θ2)


θ2=arcsin(p2p2 sin(θ2))

This function puts limits on the angles or momentum we can use, since

Arcsin limits.png

Therefore, we need p2p2sinθ21

Electron Center of Mass Frame

Relativistically, the x, y, and z components have the same magnitude, but opposite direction, in the conversion from the Moller electron's Center of Mass frame to the electron's Center of Mass frame.


p2(x)=p1(x)


p2(y)=p1(y)


p2(z)=p1(z)

where previously it was shown

p1p2



E1E2



θ1=θ1+π

Electron Lab Frame

We can perform a Lorentz transformation from the Center of Mass frame, with zero total momentum, to the Lab frame.


(E1+E2p1(x)+p2(x)p1(y)+p2(y)p1(z)+p2(z))=(γ00βγ01000010βγ00γ).(E1+E2p1(x)+p2(x)p(1(y)+p2(y)p1(z)+p2(z))


p1(x)=p1(x)


p1(y)=p1(y)


{E=γE+βγpzpz=βγE+γpz


{γ=EEβ=pzE



Without knowing the values for gamma or beta, we can use the fact that lengths of the two 4-momenta are invariant

s=P2=(E1+E2)2(p 1+p 2)2


s=P2=(E1+E2)2(p 1+p 2)2


Setting these equal to each other, we can use this for the collision of two particles of mass m1 and m2. Since the total momentum is zero in the Center of Mass frame, we can express total energy in the center of mass frame as

(E1+E2)2(p 1+p 2)2=s=(E1+E2)2(p 1+p 2)2


(E)2(p )2=(E1+E2)2(p )2


(E)2=(E)2(p )2


(E)2+(p)2=(E)2


E=(E)2+(p )2

Since momentum is conserved, the initial momentum from the incident electron and stationary electron is still the same in the Lab frame, therefore p Lab=11000MeV


E=(106.031MeV)2+(11000MeV)211000.511MeV


This is the same as the initial total energy in the Lab frame, which should be expected since scattering is considered to be an elastic collision.


Since,

EE1+E2


E1=EE2

Using the relation

E2p2+m2


p 21=E 21m21=E 21(.511MeV)2


Using

p2p2x+p2y+p2z


p1(z)=p 21p 21(x)p 21(y)


DV_RunGroupC_Moller#Momentum distributions in the Center of Mass Frame

DV_MollerTrackRecon#Calculations_of_4-momentum_components