Difference between revisions of "PbBi THickness CylinderBeam"

From New IAC Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
 
2mm thick PbBi, 10 MeV, 1 cm cylindrical incident electron distribution
 
2mm thick PbBi, 10 MeV, 1 cm cylindrical incident electron distribution
  
Line 66: Line 65:
  
 
[[File:P2.png| 400 px]]
 
[[File:P2.png| 400 px]]
 +
 +
 +
 +
 +
 +
The plot below shows the energy deposited in MeV along the pipe.  The Z axis is along the beam direction.  The distance around the beam pipe is determine by taking the pipe radius (34.8 mm) and multiplying it by the Phi angle around the pipe.  The bins are 1cm x 1cm.
 +
 +
 +
 +
 +
{| border="1"
 +
| [[File:BeamPipeDepEPhi_34.8_082815.png |200px]] ||[[File:BeamPipeDepE_34.8_082815.png| 200 px]]
 +
|+ A maximum of 450,000 MeV is deposited in a 1 cm<math>^2</math> bin when 20 Million , 10 MeV electrons are incident on a 2 mm thick PbBi target located at Z=-902 mm.
 +
|}
 +
 +
Below is energy deposited contributions from from photons(AVSzWg), positrons (AVSzWpos), and electrons.
 +
 +
 +
[[File:BeamPipeDepE_34.8_082815_parttype.png | 200 px]]
 +
 +
Why is the positron hotspot upstream of the target?  Because beam was going from right to left.
 +
 +
 +
 +
 +
 +
root commands used
 +
 +
TH2D *AVSz=new TH2D("AVSz","AVSz",100,-1000,0,12,-60,60)
 +
BeamPipeE->Draw("35.*atan(PosYmm/PosXmm):PosZmm>>AVSz","DepEmeV");
 +
AVSz->Draw("colz");
 +
  
  
 
[[G4Beamline_PbBi#PbBi_THickness_CylinderBeam]]
 
[[G4Beamline_PbBi#PbBi_THickness_CylinderBeam]]

Revision as of 17:58, 9 December 2015

2mm thick PbBi, 10 MeV, 1 cm cylindrical incident electron distribution

G4beamline pencil beam 10 cm radius

beam ellipse particle=e- nEvents=1000000 beamZ=0.0 beamX=0. beamY=0. \
        sigmaX=10.0 sigmaY=10.0 sigmaXp=0.000 sigmaYp=0.000 \
      meanMomentum=10. sigmaE=0. maxR=10.

Incident Electron spatial distribution and energy

PbBi 5-1-15 X-Yposition.pngPbBi 5-1-15 Ein.png

Positron and Electron Momentum after the converter

PbBi 5-1-15 Ppositron.pngPbBi 5-1-15 Pelectron.png

PbBi Thickness (mm) #positrons/million electrons (G4Beamline) #positrons/million electrons (MCNPX)
1 1169,1083,1068,1090,1088 =1100[math]\pm[/math] 40 1091
1.5 1723, 1668,1671, 1687,1726=1695[math]\pm[/math] 28 1728
2 1902,1921,1886,1967,1922=1920[math]\pm[/math] 30 1984
3 1920,1880,1883,1864,1857=1881 [math]\pm[/math] 24 1986
4 1688, 1766, 1712, 1709, 1753=1726[math]\pm[/math] 33 1858
5 1569,1585,1509 ,1536,1551=1550[math]\pm[/math] 29 1646
7 1475,1450,1457,1428,1477 =1457[math] \pm[/math] 20 1541
10 1250,1180,1178,1186,1166=1192[math]\pm[/math] 33 1216

G4Bl-vs-MCNPX 5-5-2015.png

Dmitry's processing of Tony's GEANT simulations showing transverse phase space portrait (left) and longitudinal phase space portrait (right). Phase space portraits show coordinate x or y vs diveregense=px/pz or py/pz (or time vs kinetic energy ). Captions show:

1. geometric (not normalized) emittance for transverse and emittance for longitudinal phase space portraits (ellipse areas divided by "pi")

2. Twiss parameters

3. Ellipse centroid for longitudinal phase portrait

4. sqrt(beta*emittance) and sqrt(gamma*emittance) - half sizes of the projections of the ellipses on the coordinate and divergence axes respectively.

Electrons - RMS

E1.png

Electrons - 68.2% core

E2.png

Positrons - RMS

P1.png

Positrons - 68.2% core

P2.png



The plot below shows the energy deposited in MeV along the pipe. The Z axis is along the beam direction. The distance around the beam pipe is determine by taking the pipe radius (34.8 mm) and multiplying it by the Phi angle around the pipe. The bins are 1cm x 1cm.



BeamPipeDepEPhi 34.8 082815.png BeamPipeDepE 34.8 082815.png
A maximum of 450,000 MeV is deposited in a 1 cm[math]^2[/math] bin when 20 Million , 10 MeV electrons are incident on a 2 mm thick PbBi target located at Z=-902 mm.

Below is energy deposited contributions from from photons(AVSzWg), positrons (AVSzWpos), and electrons.


BeamPipeDepE 34.8 082815 parttype.png

Why is the positron hotspot upstream of the target? Because beam was going from right to left.



root commands used

TH2D *AVSz=new TH2D("AVSz","AVSz",100,-1000,0,12,-60,60)
BeamPipeE->Draw("35.*atan(PosYmm/PosXmm):PosZmm>>AVSz","DepEmeV"); 
AVSz->Draw("colz");


G4Beamline_PbBi#PbBi_THickness_CylinderBeam