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This paper reviews, analyzes, and integrates the various quantitative results that have been obtained for the process
of pair production by photons. Included in this summary is a detailed review of total and differential cross sections for
pair production in an atomic and in an electron field, with a critical evaluation of the conditions of validity and the accu-
racy of the results. In addition, a summary is given of the important kinematic relations, theoretical considerations,
and the polarization effects that occur in pair production. The paper does not include a treatment of radiative corrections
to pair production, thick-target pair production, or pair production by electrons in the field of a nucleus (trident produc-
tion). Otherwise, the review is intended to include results on pair production available up to January 1969.
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I. INTRODUCTION

The radiation process which occurs when an electron
collides with an atomic nucleus, the bremsstrahlung
process, was recognized and studied as early as 1923

* This report is the third in a series on Coulomb processes for
electrons and photons, which includes a review on bremsstrahlung
(Koch and Motz, 1959) and on electron scattering (Motz, Olsen,
and Koch, 1964)

(Kramers, 1923). On the other hand, the pair-production
process, which on a theoretical basis is closely related to
the bremsstrahlung process, was discovered much later.
The Dirac equation which was discovered in 1928
(Dirac, 1928) predicted states of particles of negative
energy. These negative-energy states were subsequently
interpreted by Dirac (1930) by his hole theory as
giving rise to real physical particles with charges
opposite to those of the electrons. Actually, Dirac
assumed in his paper that these particles were protons.
It was only later that Oppenheimer and Dirac made the
bold assumption that the holes might describe new
particles, antielectrons, with the same mass as the
electron, but with positive charge. The theory was,
however, nol readily accepted, as indicated in the
following translated quotation by Pauli (1933):

“Dirac has therefore recently made an attempt,
which has already been discussed by Oppenheimer,
to identify the holes with antielectrons, particles
with charge e and the same mass as the electron.
There should then likewise exist antiprotons
besides the protons. The obvious lack of such
particles is then traced back to a special initial
condition for which only one kind of particle is
present. This seems to be unsatisfactory already,
because the laws of nature in this theory regarding
electrons and antielectrons is exactly symmetric.
It follows that (in order to satisfy momentum and
energy conservation at least two) vy-ray photons
might spontaneously convert into an electron and
an antielectron. Thus, we do not believe that the
attempt can be taken seriously.”

Shortly after Pauli’s article was written, the matter was
settled when the antielectron, the positron, was dis-
covered experimentally by Anderson “with due reserve
in interpretation in view of the importance and striking
nature of the announcement” (Anderson, 1932).
The experimental findings were confirmed in later
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experiments (Anderson, 1933) and the existence of the
positron was established.

Thefirst calculations pertaining to the pair-production
process in the field of a nucleus appeared shortly after
Anderson’s discovery, by Nishina and Tomonaga
(1933), Oppenheimer and Plesset (1933), and Heitler
and Sauter (1933). Later, relativistic calculationsifor
the production of electron—positron pairs by photons
and for the related process of bremsstrahlung (Koch
and Motz, 1959) were carried out by Bethe and Heitler
(1934). Although the Bethe-Heitler theory depends on
the Born approximation, it has proved to be remarkably
successful in predicting the important features of these
processes. Meanwhile, more accurate and detailed
calculations and experimental studies of these processes
have become available (Bethe and Ashkin, 1953;
Heitler, 1954; Olsen, 1968).

The present paper reviews, analyzes, and integrates
the various quantitative results that have been ob-
tained for the process of pair production by photons.
This summary includes a detailed review of total and
differential pair cross sections with a critical evaluation
of the conditions of validity and the accuracy of the
results. In addition, a summary is given of the impor-
tant kinematic relations, theoretical considerations,

and the polarization effects that occur in pair pro-
duction.

This paper does not include a treatment of radiative
corrections to pair production (Olsen, 1968), thick-
target pair production, or pair production by electrons
in the field of a nucleus (trident production). Other-
wise, the review is intended to include results on pair
production available up to January 1969.

Section IT defines the symbols, notation, constants,
and energy-momentum relations used in this report.
Section III gives the important kinematic relations for
pair production in the field of a nucleus and in the field
of an electron. Section IV discusses the type of calcula-
tions and approximations that have been used for this
process. Section V summarizes the polarization effects
in the pair process, which may involve linearly or
circularly polarized photons or longitudinally or trans-
versely polarized electrons or positrons, and gives the
important relations for using this process to determine
the polarization of a photon beam or to produce
polarized electron or positron beams. Sections VI and
VII give the available cross-section formulas for pair
production in an atomic and an electron field, respec-
tively. Finally, Sec. VIII compares and evaluates the
various cross-section results.

II. DEFINITIONS

The following definitions and relationships are given for the symbols and constants used in this review. The con-
stants are given with three significant figures although more accurate values are available.

dﬂ_'., dﬂ_, dﬂf= Sin 0+d0+d<1)+, Sin G_do_dq)_, Sin 07d07d®7

=element of solid angle in the direction of py, p_, or q, respectively, relative to k.

dQ=sin 0d0dP = element of solid angle in the direction of p; relative to p—.

do

—— =Pair cross-section differential with respect to the positron energy. The polarization effects for this

dE,

cross section are specified by the functional dependence on the various combinations of the

polarization variables which are shown in Table 6.03.

do
dE.d

=Pair cross-section differential with respect to the positron energy and the solid angle in the direction
of p, relative to k. The polarization effects are specified by the functional dependence on the

various combinations of the polarization variables which are shown in Table 6.03.

&o
dE_,_dw
d’o
dE, dQ.dQ_

p—, where 0= (k/E E_)w.

= Pair cross-section differential with respect to the positron energy and the angle 6 between p; and

=Pair cross-section differential with respect to the positron energy and the solid angles in the
direction of p; and p_ relative to k. The polarization effects are specified by the functional de-

pendence on the various combinations of the polarization variables which are shown in Table 6.03.

do

— =DPair cross-section differential with respect to the solid angle for the recoiling target particle in

™ the direction of q relative to k.

S| &

d

?  electron and positron.

& &

—— =Pair cross-section differential with respect to the resultant pair momentum P, acquired by the

=DPair cross-section differential with respect to the momentum transfer g to the target particle.
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E,, E_=Total energy of the positron or electron, respectively, for pair production in the laboratory
system,* in mqc? units.

E,, E.=1Initial and final (recoil) total energy, respectively, of the target particle for pair production in the
laboratory system,* in moc? units with Eo=ms,/m,.

e, e*=Complex unit vectors for photon polarization such that e-e*=1, e-k=0, and that e exp [i(k-r—
kt)] is proportional to the electromagnetic-vector potential. These vectors are complex or real
when applied to photon beams with elliptical or linear polarization, respectively.

e="Unit vector for linear photon polarization such that e-e=1 and e-k=0.

F(g), Gz(g) =Atomic- and nuclear-charge form factors, respectively, for static charge density of the atom or
nucleus, p(r) (per electron or per proton)

= [ exp (iq-1)p(r) d*r.
F1(g), Fo(g3) =Dirac and Pauli invariant form factors related to Gz(g§) and Gu(§) by
Ge=F1— (@/4m?) «F, Gu="F1+«F,,
where « is the anomalous magnetic moment of the nucleus in units of the Bohr magneton, ¢/2m,.
Gu(g) =Magnetic nuclear form factor, for static magnetic moment density, u(r), of a nucleus
= [ exp (iq-1)pu(r) d*.
Gz(3), Gu (@) =Invariant electric and magnetic nuclear form factors.
k, k=1Initial photon energy and momentum, respectively, in #c? and mc units in the laboratory system.*
k=TUnit vector for the photon momentum such that k=k/| k |.
k=TFour-component vector= { k, %} such that k?=k2— k2,
k;=Threshold photon energy for pair production in the laboratory system,* in m,c? units.
n;, n_=Unit vector for the positron and electron momentum, such that py=p;n, and p_=p_n_.

n="Unit vector perpendicular to the scattering plane (k, p4) or (k, p-) such that n=(kxp,)/
| kxp_|,orn=(kxp_)/[ kxp_]|.

P+, P—=Momentum of the positron or electron, respectively, for pair production in the laboratory system,*
in moc units.

P+=Four-component vector={py, E} such that g ?=p,?—E,2

Po, P-=Initial and final momentum, respectively, of the target particle for pair production in ¢ units.
In the laboratory system,* ps=0 and p,=gq.

Po=Four-component vector= {po, Fo}, such that fe=pl— E= — (m./my)*.
Pr=Four-component vector={p,, E.}, such that p2=p2—Ez2=— (m./m)>.

P.=Vector for the circular polarization of a photon beam. The magnitude of the vector gives the
degree of circular polarization for the beam in the direction of the vector § such that P.=P.£.

Pr=Magnitude of the linear polarization of the photon beam.
P,=p;+p_=resultant pair momentum equal to the vector sum of the positron and electron momenta.

P,, P_=Polarization vector for the positron or electron beam, respectively, produced by photons in the
pair process. The magnitude of the vector gives the degree of polarization for the beam in the
direction of the vector, and is equal to the average expectation value of the spin operator for the
beam. Then P, -, is the component of P, along the chosen quantization axes .

* Primed symbols refer to the center-of-momentum system.
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P, L, P_L=Longitudinal polarization vector for the positron or electron beam in the direction of the positron
or electron momentum. The magnitude of the vector gives the degree of polarization for the
beam in the direction parallel to the positron or electron momentum such that P,Z-n,=P,Z or
P_L.n_=P_ZI, This vector is a component of the polarization vector P, such that

Py=[(P")*+ (P£")* "
P, 7, P_T=Transverse polarization vector for the positron or electron beam in the direction perpendicular to
the positron or electron momentum. The magnitude of the vector gives the degree of polarization

for the beam in the direction perpendicular to the positron or electron momentum such that
P,7-n,=0 or P_T-n_=0. This vector is a component of the polarization vector P, such that

Py=[(P5)*+(PT) I
q=Momentum transfer to the target particle in pair production in the laboratory system,* in mqgc
units= (k—py—p-) =p-.

g=TFour-component vector={q, go} such that §*=q*—g¢®, where go=k—E.—E_=E,— (m./mg) =T,.
r=Radius vector from the center of the nucleus in units of A,.

T, T-=Xinetic energy of the positron or electron, respectively, for pair production in the laboratory
system,® in moc? units.

Ty, T-=1nitial and final kinetic energy, respectively, of the target particle for pair production in the
laboratory system,* in mc? units such that To=0.

u= Component of p; perpendicular to k, such that p;=u+(p;- k) k.
u=p, sin 0, E,0, (for extreme-relativistic energies and small angles).
v=Component of p_ perpendicular to k, such that p_=v4- (p_-—k) k.
v=p_ sin 0_E_0_ (for extreme-relativistic energies and small angles).
w=(E.E_/k)6.

Z=Atomic number of the target atom.

Zep(r) = Charge density for the atom or nucleus, with normalization such that [p(r) &®r=1.

A. Greek Symbols
B+, B_=Ratio of the positron or electron velocity, respectively, to the velocity of light.
Beu= Ratio of center-of-momentum velocity in pair production to the velocity of light.
B=Exponential screening constant=111Z713,

¢, {_=TUnit polarization vector for the positron or electron, respectively, produced by photons in the pair
process. These vectors are defined as the expectation values, {,=u,*ou, and {_=u_*ou_, where
u4 and u_ are eigenstates for {, -0 and {_-0, respectively, such that {; «ou,=u, and {_-cu_=u_,
where ¢ is_the Pauli spin operator. The unit vectors {; and ; may be chosen to have arbitrary
directions which can be specified in terms of the coordinate system given by the unit orthogonal

vectors n, n;, ny Xn,orn, n_, n_xXmn.
0., 6_, 6, 6,=Angle between k and p, p—, 4, and Py, respectively.
0= Angle between p;. and p_.

u(r) =Nuclear magnetic moment density, such that [u(r) d is equal to the ratio of the nuclear magnetic
moment p to the Bohr magneton (e/2m.).

£=i(e xe*) =Unit vector for circular photon polarization with a direction that is parallel or anti-
parallel to k for right-handed or left-handed polarization, respectively.

o=Total cross section for pair production by photons.

* See footnotezon page 583.



J. W. Motz, H. A. OisEN, axp H. W. Kocu Pair Production by Photons 585

®,, &_, ,=Azimuthal angle for the positron, electron, or recoil target particle, respectively, measured in a
plane orthogonal to k from a reference line originating from the point of emission, as shown in
Fig. 3.01(a).

&= Azimuthal angle equal to 7— ($_—®,). For linearly polarized photons discussed in Sec. V, & is
also defined as the azimuthal angle between the polarization vector e and the fixed direction e®
which are both orthogonal to k.

o=m—d=3>, —&_=dihedral angle which is equal to the difference in the azimuthal angles of the

positron and electron.

B. Useful Relations
Bi+=p4/Es,
El=p +1,
Ey=Ty+1,
Eyi=1/(1—BsH)"",

C. Constants

k=E,+E_+T,
pe=[T+(Ts+2) ],
p=Bs/(1—BsH)M

ay="2/mee®= 137K, = (137)2=0.530X 10~ cm (Bohr radius of hydrogen atom).
A=Z+N (number of neutrons)~s2.6Z for high Z, 2Z for low Z (mass number of nucleus).

a=e/fic=1/131.

¢=3.00X10" cm/sec (speed of light in vacuum).

e=1.6X10" C (electron charge).
=1.44X10"1 MeV-cm.

7=06.58X10"2 MeV-sec=1.05X10"% erg-sec.

he=12.4 keV-A.
fic=1.97X1011 MeV-cm.

Ro=7/moc=3.86X10~1 (Compton wavelength).

mo=9.11X10"% g (electron rest mass).
moec?=0.511 MeV.

m~SAX1.66X1072 g (rest mass of the atomic nucleus).

1o/ My =5.54-1 104,

ro=€x/moc?=2%o/137=2.82X10~1 cm (classical electron radius).
Rrr=0.885a0Z713 (radius of the Thomas-Fermi atom).

III. KINEMATICS

The following subsections give some of the important
kinematic relationships for the pair-production process.
These results are based on a relativistic treatment
(Borsellino, 1947) of the conservation laws for energy
and momentum. A schematic representation of the
momentum vectors in the laboratory (unprimed) and
the center-of-momentum (primed) systems is given in
Figs. 3.01(a) and (b), respectively. These vectors
include the electron and positron momenta p; and p—,
the photon momentum k, and the recoil momentum q
of the target particle (nucleus, atom, or electron). The

recoil momentum q is required in order to conserve
energy and momentum and is a key parameter in the
pair-production process.

A. Energy and Momentum Relations in the
Laboratory System

The energy conservation equation in terms of the
photon, positron, electron, and recoil-target-particle
energies, &, T, T_, and T, respectively, is given as

k=(T4+D)+(TA+D)+T, (3.01)

where it is assumed that the target particle is initially at
rest in the laboratory system such that Ty=0.
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i=

(b) CENTER-OF-MOMENTUM SYSTEM
F16. 3.01. Schematic representation of the momentum vectors
for pair production in (a) the laboratory system and (b) the
center-of-momentum system. The symbols in the diagrams for

the momentum and emission angle of each particle are defined
in Sec. II.

The momentum conservation equation in terms of the
momenta vectors is given as

k=pi+p-+q.
From Fig. 3.01(a) and Eq."(3.02)
¢=Rpitp
+2p4p_[cos 04 cos 6_+sin 0y sin 6_ cos (By.—P-) ]
—2pik cos 0,.—2p k cosO—, (3.03)

where the angles 64, 6, ®, and ®_ are defined in Sec.
II and shown in Fig. 3.01(a). Another expression for ¢
which involves the recoil angle 6,, defined in Sec. IT
and shown in Fig. 3.01(a), is given as
g sin §,=[p42 sin? 64+ p_2 sin? 6_

+2p4p_ sin 6 sin 6_ cos (P1—P_) J2

(3.02)

(3.04)

Some of the above equations can be simplified by
introducing the resultant pair-momentum vector P, and
its corresponding angle 6, measured with respect to k.
This vector is defined as

P,=p;+p-. (3.05)

In terms of P, and 6, the expression for ¢ can be written

as

g cos O,=k—P, cos b, (3.06)

and

g sin 6,= P, sin 0. (3.07)

OcToBER 1969 - Part I

The energy 7, and momentum ¢ of the recoiling
particle are related by

Tr = [(mr/ml)) 2+q2]1/2_ (mf/mO) .

For small values of ¢ (¢&m./m,), T, is given by the
approximation

(3.08)

T~ (mo/my) 32 (3.09)

B. Energy and Momentum Relations in the Center-
of-Momentum System

The energy and momentum conservation equations
in the center-of-momentum system shown in Fig.
3.01(b) are given as

F4+To = (T4 +1) +(T/4+1)+T/,  (3.10)
k'+py =0, (3.11)

and
p+'+p-+p./ =0, (3.12)

where T/, po’ and T}/, p,/ are the kinetic energy and
momentum of the target particle before and after the
interaction, respectively.

The relation between the photon energy %' in the
center-of-momentum system, and the photon energy %
in the laboratory system, which is determined by the
center-of-momentum velocity Bem in units of the
velocity of light, is given as

k' =k[(1—Bcwm) / (1+Bcmu) 2. (3.13)

The momentum balance in this system [see Fig.
3.01(b) ] requires

k' = (1m,/mo) Bom (1—Bou?) 12, (3.14)
It follows that
k
Bou= m (3.15)
and
i D) }”2
= {[2k+(mr/mo>] (8.162)

and conversely

g [k/+ [klz_,_ (%)2]”2} . (3.16b)
mo/ M Mo

C. Threshold Photon Energy for Pair Production

The threshold photon energy for pair production is
designated as &/ in the center-of-momentum system and
k. in the laboratory system. In the center-of-momentum
system, the energy and momentum conservation laws
at threshold become

R+ (om/mo) [(1—Bon®) 712 —1]=2

k{ — (me/mq) Bou (1—Bou?) V2=0.

(3.17)
and
(3.18)
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TasLE 3.01. Threshold photon energies® (in megaelectron volts) in the laboratory system for pair production.

Target\ Pair
particle \particle  Electron Muon Pion K Meson Proton
Lead 1.02 2.12X10? 2.80X102 9.90X10? 1.89X103
Copper 1.02 2.12X10? 2.81X10? 9.96X10? 1.90X103
Carbon 1.02 2.14X10? 3.51X10? 1.03X10? 2.03X103
Proton 1.02 2.40X10? 4.19X10? 1.48X10° 3.75X108
Electron 2.04 4.43X10* 7.70X10* 9.56X108 3.45X108

8 These energies were evaluated from Eq. (3.19b).

From Egs. (3.17) and (3.18), the threshold energy in
the center-of-momentum system becomes

k! =2[ (mo+m,) [ (2mo+m,) ]

From (3.16b), the threshold energy in the laboratory
system is

(3.19a)

ky=2(14mo/m.). (3.19p)
Values of the threshold energy are given in Table 3.01
for the pair production of various particles with
different target particles. These values are obtained
from Eq. (3.19b).

_ Rl /o) Chet- (mo/me) 1= 24 — Lt (/o) J{ L oma/mo) k= 21— 4 (e mo) 12

D. The Minimum Recoil Momentum

The minimum recoil momentum g¢min is obtained
when all the momentum vectors are pointing along the
photon direction such that 6;=0-=0. This condition
gives

Gmin=k—py—p-. (3.20)
From Eq. (3.20) and the energy-conservation relation

k4 (mo/mo) = Ex+E_+[ gmin?+ (1) mo) 2]H2,

it is found that the absolute minimum of gnia occurs at

E,=E_. This absolute minimum is given as (Borsellino,
1947)

Jmin=

It is to be noted that at threshold where k;=
2[14 (m,/me) ], according to Eq. (3.19b), ¢ is always
given by its minimum value gmia:

2t (m/m)] _
I Imin = T ) /) Rl
Explicit expressions for ¢gmin are given below for pair

production in the field of (1) a nucleus and (2) an
electron:

(3.22)

1. Nuclear-Field Pair Production (m.>my). For
m>>my Eq. (3.21) becomes
Qmin=k_(k2'—4) 12, (3.23)
It is interesting to note that this result is valid for any
photon energy (i.e., for k<m,/my as well as for
k>m./mo). Thus gmin is independent of the mass of the
recoiling atom.
(a) For high photon energies where 23>1 and where
B+, B——1, the expression for ¢mix in Eq. (3.23) becomes

qmin=2/k- (3.24)

(1m1/mo) [ 2k (1mr/mo) ]

’(3.21)

(b) For photon energies at threshold where k=k,=2,
from Eq. (3,19b) and where 8, =8_=0, the expression
for gmin in Eq. (3.22) becomes

Jmin =2. (3.25)

2. Electron-Field Pair Production (Triplet Production
with m,=m,). For m,=mqy, Eq. (3.21) may be written
in the form

Gmin=4k/{k(k—1) + (k+1) [k (k—4) "}. (3.26)

(a) For high photon energies where £3>1 and where
By, B=—>1, Gmin is given by gmin=2/%.

(b) For photon energies at threshold where k=k;=4

from Eq. (3.19b), the expression for gmin in Eq. (3.22)
becomes
(3.27)

—4
Gmin=3-

It should be noted that for triplet production at
threshold also the pair particles have the same momenta

pr=p-=%
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as it should be, since recoil and pair electrons are
indistinguishable particles.
E. The Maximum Recoil Momentum

The maximum recoil momentum gm.x is obtained
when all of the momentum vectors P, (or more specifi-
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cally p; and p-), k, and q are colinear,
Qmax = |k|+lp+1+lp—l'

In a manner similar to the derivation of ¢min
(Borsellino, 1947), the absolute maximum of gmax
which occurs for E, =E_ is given as

_ k{ (mr/mo) [k~ (1mr/m0) 1— 2} + [+ (1m0/ m0) I [ (1) m10) k= 2T2— & (/o) 2} 112
B (me/mo) [ 2k~ (mr/m0) ] '

max

The maximum and minimum recoil momenta are
related by

AL/ me) (kA-me/mo) —1]
Gt ™ T o) (2t e/ me)

A comparison of Egs. (3.28) and (3.27) shows that
gmax=¢min at threshold photon energies, in accordance
with Eq. (3.22). )

ki Explicit expressions for gmax are given below for pair
production in the field of (1) a nucleus and (2) an
electron.

(3.29)

1. Nuclear-Field Pair Production. For m.>mg, one
finds from Eq. (3.28) or from (3.26) and (3.29)

_ k-t (m,[mo)
Imax™= bt (1 0)

This formula is valid for all values of % as is the corre-
sponding formula (3.23) for ¢mi. Note that while
gmin 1s Independent of #,, gmax does, for large values of
k(k Zm./my), depend on the mass of the recoiling atom.

[k+ (—4) V7],

(a) For high photon energies where £3>1 and where
B4, B—1, the expression for gmax becomes

_ 2R[(m/mo) +E]
max 2 k + (mr /m0> .
(b) For photon energies at threshold where 8, =8_=0

and where k=k;=2 from Eq. (3.19b), Eq. (3.29)
becomes

(3.30)

Gmax=2. (3.31)

2. Electron-Field Pair Production (Triplet Produc-
tion) . For m,=mq, Eq. (3.28) becomes

Gmax= {k(k—1) + (k+1) [k(k—4) J?}/ (2k+1).
(3.32)

(a) For high photon energies where £3>1 and where
B4, B—>1, the expression for gmax becomes
(3.33)

(b) For photon energies at threshold where £ =%,=4
from Eq. (3.19b), the expression for gnax becomes

(3.34)

Qmax=k-

—4
Jmax =3

(3.28)

F. The Minimum Momentum Transfer for a Given
Positron (or Electron) Momentum

The minimum momentum transfer for a given posi-
tron (or electron) momentum, gumin(P+) [OF gmin(P—) ],
is obtained when the electron momentum p_ (or
positron momentum p,) is in line with q and in the
same plane, as shown in Fig. 3.02. Therefore

Gmin (D) = (P2 +R*—2p 1k cos 0,) 2 —[(k— Ey)?—1]12
(3.35)

This minimum transfer is related to the maximum
impact parameter #max (in units of the Compton wave-
length &), which is discussed by Heitler (1954) and is
used to evaluate screening effects (Koch and Motz,
1959), by the following equation:
Tmax=1/Gmin. (3.36)
The dependence of 7max on E; for different values of
64, as given by Eq. (3.35), is shown in Fig. 3.03(a)
and (b) for values of % equal to 21.57 and 315.11,
respectively. The solid lines are obtained for the pair
process, and the dashed lines are obtained for the
inverse bremsstrahlung process in which the initial
electron energy FE; and the photon energy % are sub-
stituted for —E; and —% in the pair process. It is
interesting to note that the values for 7m,: have a
maximum value in the pair process and become arbi-
trarily large as the photon energy approaches zero in
the bremsstrahlung process.

G. Maximum Recoil and Emission Angles

In a manner similar to the derivation of gmax in Eq.
(3.28), it can be shown that

cos 0,2 (2mo/ m.ke) [ (my/ mo) b+ (m./mo)2— 1742 (3.37)

Fi16. 3.02. Vector diagram
for determination of the
momentum transfer q when
P+ is observed at the angle
64. The minimum momen-
tum transfer Qumin is ob-
tained when p_ and q lie
in the same direction and
same plane.
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Fi16. 3.03. (a) Dependence of the maximum impact parameter 7y,ax (in units of Xo) on (Ey—1)/(k—2) for the pair process (solid
lines), and on %/ (E;—1) for the bremsstrahlung process (dashed lines). Results are given for % equal to 21.57 in the pair process, and
for (E;—1) equal to 19.57 in the corresponding bremsstrahlung process. The numbers on the curves give the values of the ratio 6,/8,
for the pair process, where 6, is equal to 1/k, and 6z/8, for the bremsstrahlung process, where 6; is the photon emission angle and 6, is
equal to 1/E;. (b) Dependence of the maximum impact parameter 7ma; (in units of &) on (E;—1)/(k—2) for the pair process (solid
lines), and on %/(E1—1) for the bremsstrahlung process (dashed lines). Results are given for % equal to 315.1 in the pair process, and
for (E;—1) equal to 313.1 in the corresponding bremsstrahlung process.

Therefore for the case of nuclear-field pair production, given by Eq. (3.19b), the maximum recoil angle
the maximum recoil angle (6,) max becomes (6:) max is equal to 90°.

Because of the interchangeability of each of the
(0:) max=cos™ { (2/k) [1+k(mo/m.) 2}, (3.38) particles in triplet productiox%, the sZme limit given in
Eq. (3.36) for (6,)max applies to the emission angles
60, and 6_ as well. Therefore, none of the particles in
triplet production can be emitted at angles greater
(0;) max =cos™ (2/kY2). (3.39) than (6:)max given in Eq. (3.37). On the other hand, for
nuclear-field pair production, there is no limitation on

The above equations show that at threshold where £ is  the emission angles for the pair particles.

and for the case of electron-field pair production
(triplet production)

H. Maximum and Minimum Positron Energies for Fixed 6,

In general, for a recoiling particle of mass m,, the formulas for the maximum and minimum positron energies
are different for the two photon energy regions k> 2m,/ (m,—mo) and k<2m.,/(m,—my). The formulas are given
by the following:

(a) For &> 2m,/ (m.—my)

(11r/m0) [k~ (1m4/m0) J(k—1) +k cos 8, {B* cos? 6.+ k[ (m./mo) -+ 1][ (m,/mo) (k—2) — E]} 12
[+ (m./mo) — k2 cos? 0, ,

Eimin=1. (3.41)

Eymex(0y) =

(3.40)
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(b) For k< 2m,/ (m,—mq)

OcTOBER 1969 + PArT 1

(mr/mg) [k (mr/mo) J(k—1) £k cos 0. { %2 cos® 01+k[ (m,/mo) + 1] (m0r/me) (B— 1) — E ]} 112

E+max,min (0+) =

L&+ (my/mo) P—R? cos? 6,

(3.42)

Explicit expressions for Eimax and E;min are given below for pair production in the field of (1) a nucleus and

(2) an electron:

1. Nuclear-Field Pair Production (m, >my). For m.>me one finds

(mr/mo) Lo~ (me/mo) 1(k—1) 4k cos 6, [#? cos? 0.+ (m./ma) %k (k—2) TH2

Eimax= 3.4
hmax [+ (m,/me) P—F? cos® 0, ’ (3.432)
Eimn=1. (3.43b)
From these results it follows that for k<m./my
‘E+mm;';'k'—1 (3.44)
for all angles, while for &>>m,/mq
(k—1)
E max = y 3.45
+ 14 (mo/m.) k(1—cos 6,.) ( )
giving the maximum value Eimax=%—1 only for small angles 0,.<<(2m,/mqok) 2
2. Electron-Field Pair Production. For m,=mg one finds
k*— 14k cos 0, (& cos? 0, —4k) V2
E max = .46
+ (kF+1)2—Ek2 cos? 0, ’ (3.462)
F*—1—F cos 6..(k? cos? 0, —4k)12
Eimin= . 3.46
hmin (k+1)2—E2 cos? 0, (3.46b)
1IV. THEORY and large angles. Class A also includes pair processes in

In the theoretical calculation of the pair-production
process,* it is convenient to consider two cases in which
the recoil energy Tr of the target particle is (A)
negligible and (B) not negligible compared to the
photon energy k. The interaction between the created
pair and the target particle can be described in Case A
by a static potential interaction, and in Case B by the
complete relativistic interaction through the matrix
element of the target-particle, four-vector current
density.

Processes belonging to Class A above include electron
or muon pair production in the field of an atom for
energies and angles such that

Tr=[g*+ (me/me) /2 — (m./me) <Kk (4.01)
Since m,>mo, Eq. (4.01) may be written
¢*/2m Lk /m. (4.02)

The potential description of the atomic-field, pair-
production process is thus valid, except for high energies

* The theoretical considerations in this section apply to the
elastic pair-production process which does not involve atomic-
excitation effects. A discussion of the inelastic pair process with
atomic excitation is given by Wheeler and Lamb (1939, 1956)
and by Knasel (1968).

the field of an electron, provided that the photon energy
is high and the electron and positron emission angles
are small. In such a case, the momentum transfer close
to the minimum value, gmin as given by Eq. (3.26),
satisfies the condition that

q%/ 2mo<Lk/my, (4.03)

which is equivalent to the condition given by Eq. (4.01).

Processes belonging to Class B include high-energy,
large-angle pair production in the field of an atom or an
electron such that the condition given by Eq. (4.01) is
not fulfilled. In this respect, there is a difference be-
tween atomic-field and electron-field pair production at
low energies: Atomic-field pair production at low
energies may belong to Class A because of the large mass
of the nucleus, while triplet production at low energies
may be excluded from Class A because the kinetic
energy of the recoiling electron, ¢?/2m,, may be of the
order k/my.

A. Pair Production in the Potential Field of the
Target Particle

The pair-production cross section for processes
belonging to Class A is given by

de=[&/(2m)*](p-pEs/k) | M PAE,dQdQ,  (4.04)
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where the matrix element is given by
M= f F_(£) YT, (1) e exp (ik-1) d. (4.05)

Here ¥_ and ¥, are the wave functions of the created
electron and positron, respectively, in the field of the
target particle, and y and 74 are the well-known Dirac
matrices (Jauch and Rohrlich, 1955).

It is convenient to distinguish between the following
two cases: (1) the Born approximation calculation in
which the electrostatic potential of the target particle is
included in ¥, and ¥_ only to the first order, and (2)
the exact calculation in which ¥, and ¥_ are exact
wave functions in the electrostatic potential of the
target particle.

1. Born Approximation Calculations

In the Born approximation calculations, ¥, and ¥_
are given by the first-order-scattering wave functions

Vi=uy exp (Fipy-r)
te / Ga(T—1)ys® (1) g exp (Fips-r) d%, (4.06)

where #; and #_ are the positron and electron free-
particle spinors, respectively, ®(r) is the potential of the
target particle, and where the Green’s function G(r)
may be written as

f 1Y PFVEL—mo

ap
p*—p4?

Gy(r)= L

@) exp (ip-r).

(4.07)

From Egs. (4.05), (4.06), and (4.07), one obtains
the Born approximation matrix element which may be
written in the form

. iy (P —F) —my
M=1Ze?ﬂ_{ .QL
Y oy
iy (k—py) —mo } drr
T . —o(q), (4.08
+s oy Yo g r(Q), (4.08)

where we have introduced the charge density Zep(r)
of the target particle or atom by means of the potential
equation V2®(r) =—4nZep(r). We have further
introduced the Fourier transform of p(r), p(q)=
[ exp (iq-1)p(1) d?r.

All Born approximation calculations are based on
Eq. (4.08). This equation together with Eq. (4.04)
contain all information concerning the pair-production
spectrum, angular distributions, and photon, electron,
and positron polarizations.

For a target point particle of charge Ze, p(r) is a
delta function é(r), and we get

p(q) =1

For an atom the charge density is given by

p(x) =8(x) —pa(r)

(point particle). (4.09)
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when the nucleus may be taken to be a point particle.
Here po(r) is the average charge density for one atomic
electron. In this way the atomic form factor F(g) is
introduced through the relation

p(qQ) =1—F(q)
with

(atomic screening), (4.10)

P@) = [ exp (ig-5)pu(x) d¥.

In general, when the charge distribution of the
nucleus also has to be taken into account, the charge
density of the atom is given by

p(r) =pa(r) —pa(r),

where p,(r) is the average charge density per proton
inside the nucleus. We find

r(q) =Gz(q) —F(q), (4.11)

where the static electric nuclear form factor is given by

Gs(@ = [ exp (ia-)pn(r) .

When the momentum transfer g is small, of the order
unity or smaller, the extension of the nucleus is un-
important and Eq. (4.10) applies. On the other hand,
for much larger values of ¢ [but still small enough so
that the condition Eq. (4.01) is fulfilled] the atomic
form factor is negligible and the effect of the charge
distribution is well described by

r(q) =Gz(q) (412)

Equations (4.09), (4.10), and (4.12) give the general
effects of the charge distribution. In the case of Eq.
(4.12), a term describing the effects of the static mag-
netic moment distribution of the nucleus may be added,
as described, for example, by Olsen (1968, Chap. 5.3).

(extended nucleus).

2. Exact Calculations

When the effective expansion parameters Ze/By in
the Born expansion of ¥,. are not small, i.e., when the
target element is heavy or the velocity of one of the
produced particles is small, the Born approximation
matrix element [Eq. (4.05)] based on the Born wave
functions [Eq. (4.06)] cannot be assumed to give a
correct description of the process. In this case, exact
scattering-state wave functions should be used in the
matrix-element equation (4.05). For high energies and
small angles, the Furry—Sommerfeld-Maue wave
functions (Furry, 1934; Sommerfeld and Maue, 1935)
may be used successfully, as shown by Bethe and
Maximon (1954). For lower energies, these wave
functions fail to give a correct description, and an
expansion of ¥, and ¥_ in partial waves has to be used.
This is the method used by @verbg, Mork, and Olsen
(1968). Also in the exact calculations polarization
effects may be taken into account.
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B. Pair Production by Relativistic Interaction with
the Target Particle

When the kinetic energy of the recoiling particle 7'
is not much smaller than the photon energy &, dynamical
effects of the target particle have to be included. When
we consider the Born approximation, the process to the
lowest order in the interaction between the created pair
and the target particle, Eqs. (4.04) and (4.08) with
certain modifications are still applicable. The present
discussion does not include effects due to the direct
interaction of the photon with the target particle.
[See the discussion by Banerjee (1958).]

The modification in Eq. (4.04) comes about because
of the appearance of the energy of the recoil particle in
the energy conservation relation which now reads

k+mr/m0 =E++E++Ef.

This has the effect that the expression for the cross-
section equation (4.04) is replaced by
PO o gy

@2m)* & E_(p-+pr) +Er

AE,dQ,d9_,

(4.13)

where the matrix element M is given by the relativistic
generalization of Eq. (4.08) as

iy (p-—k) —mo .
(p-—R)me
i+ (k—py) —mo
(Br—b)
where ZeJ,(Po, Pr) is the four current of the target
particle in momentum space, § is the four-vector
momentum transfer, and §, and P, are the four-vector
momenta of the target particle in initial and final states,
respectively. The modifications of Eq. (4.08) are that
q in Eq. (4.08) has been replaced by ¢ in Eq. (4.14)
and that vy multiplied by the fourth component of the
(three dimensional) Fourier transform p(q) has been
replaced by the invariant interaction involving
Ju(Po, P») which is essentially the (four dimensional)

Fourier transform of the four-vector current density,
such that

M=Ze¥i_ {y-e

4w
+va y-e} "o Ju(Po, Dr), (4.14)

—ivuTu (Do, Br) =V4p (Do, Br) —1Y*J (Do, Pr) -

The momentum-space current density J,, depends on
the spin of the target particle. For instance, for a spin-0
target particle, J, in the laboratory system is given by

Ju (Do, Pr) = [1/2 (m,E) V]G () (PotDr)us  (4.15)

where Gg(§) is the invariant nuclear electric form factor.
In particular, for small values of the recoil momentum
p,, for which E,~m,/m,, only Js of magnitude
Ji~1Gr(q), will be of importance, and Eq. (4.14)
reduces to Eq. (4.08) with p(q) given by Eq. (4.12).
This exemplifies how the static-potential-limit equation
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(4.08) is obtained from the relativistic theory as given
by Eq. (4.14).

As another example, we consider the case of a spin-3
target particle. For a point particle one has

Ju(Po, Pr) = tzvutss, (4.16)

where #; and #, are the initial- and final-state, free-
particle spinors, respectively, for the target particle.
Equation (4.14) with J, given by Eq. (4.16) describes
for Z=1, for instance, muon pair production in the field
of an electron when effects due to the direct interaction
of the photon with the target electron are included.
For the case of triplet production, Eqs. (4.14) and
(4.16) are valid when exchange effects and effects due
to the direct interaction of the photon with the target
electron are included.

For a spin-} particle with internal structure, J, is
given by

Ju(ﬁoi 1-77) =1u.2{F1(Q)'Yu'_ (K/zer)FZ(Q)O'Wqﬂ}uh
(4.17)

with « the anomalous magnetic moment and F; and F,
the Dirac and Pauli invariant form factors, respec-
tively. Again, as for the case of a spin-O particle, one
finds for small values of the recoil momentum q that J,
is given by J,=1Gg(d) 0.4 and Egs. (4.08) and (4.12)
are obtained in this static limit.

As in the analogous Case A above, the equation for the
cross section [Eq. (4.13)] and for the matrix element
[Eq. (4.14)] contain all information concerning the
pair-production process, including polarization effects.
Calculations are based on these equations together with
appropriate expressions for J,(fo, pr) as, for example,
given by Egs. (4.15), (4.16), and (4.17).

V. POLARIZATION EFFECTS

A. Fermion Polarization

The polarization of fermions, e.g., electrons, positrons,
or muons, is most conveniently described in the rest
system of the particle (Motz, Olsen, and Koch, 1964) .
The fermion polarization vector for complete polariza-
tion, {, is defined as the expectation value of the Pauli
spin matrix vector o,

{=u*ou, (5.01)
for the state # which is an eigenstate of the component
of o along { such that

o-{u=u. (5.02)

The differential cross section do for any quantum-
electrodynamic process involving polarized fermions is a
linear function of the fermion polarization vector {,
with

do~A+B+Y, (5.03)
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where A and B are functions of the momenta of the
particles taking part in the process and of the polariza-
tions of the particles other than the fermion polarization
described by .

The application of Eq. (5.03) depends on whether the
fermion is emitted in or initiates the process:

(1) When a fermion beam is emitted in a process, the
component of the polarization in the direction ¢ of that
beam is given by

(O—o(=9 _B-¢
P=Pg=T2"T"2 20 (504
W=t e "2 O
and the polarization vector of the beam is

P=B/4, (5.05)

where P may apply either to the positron or electron
polarization, P or P_, respectively, which are discussed
in Sec. IL

(2) When a process is initiated by a partially
polarized fermion beam with polarization P=P, the
cross section for the process is given by an incoherent
superposition of the contributions from the states with
¢ and —{ with probabilities w; and w_, respectively,

do (P) =w,do (§) +w_de(—1), (5.06)

where w;+w_=1 and wy—w_=P. From Eq. (5.03)
one obtains

do(P)~A+PB-{=A+B-P, (5.07)

which shows that the partially polarized beam is
described by the complete polarization case (5.03), but
with { replaced by P.

B. Photon Polarization

Photon polarization is described by means of the
photon polarization vector e which occurs in the vector
potential of the radiation

A=e exp [i(k-r—kt)]. (5.08)

The polarization vector e is a complex unit vector,
e-e*=1, perpendicular to k, e-k=0.

In the cross section for a quantum-electrodynamic
radiation process the photon polarization vector e
always occurs bilinearly. The cross section for any
process involving an emitted or absorbed photon of
polarization specified by e is of a form proportional to

Mjeie* =5{ (M i+Mjs) eses®— (3/2) (M ij— M ) diba},
(5.0)

where M; is a function of the momenta of the particles
taking part in the process and of the polarizations of the
particles other than the photon and where 7 and j are
the indices for summing over the spatial components.
In Eq. (5.09) we have introduced the circular polariza-
tion vector € defined by

£=ie xe*, (5.10)

and the antisymmetric tensor 8;; which is defined by
(5.11)

Because the cross section is a real quantity, M=
M and Eq. (5.09) may be written as

do(e)~3{2(Re M) ee*+ (Im M) dink}, (5.12)

where Re and Im stands for real and imaginary parts,
respectively. The form of the cross-section equation
(5.12) holds whether the process is completely differen-
tial or when some of the particle momenta or polariza-
tions are not observed. In Eq. (5.12) the linear and
circular polarization effects are completely separated in
that the first and second terms describe linear and
circular photon polarization effects, respectively.

din=1 and &ix=—0jm=—"0uw;

1. Linear polarization

In the case of linear photon polarization the radiation
field oscillates in a plane. From Eq. (5.08) it follows
that e for this case is a real vector. The cross section is
then, according to Eq. (5.12), proportional to

do(€)~(Re M,;)ee;. (5.13)

In an arbitrary coordinate system with axes e and
e®  such that e®, e®, and k form a right-handed
orthogonal coordinate system, the polarization vector
may be written

e =cos PeM--sin Pe?, (5.14)

with & the angle between e and the e® axis. The
expression (5.13) may then be written

do () ~Muy~+ Mo+ (Mu—Ms) cos 2&

+2(Re My) sin 28,  (5.15)
This then gives the influence of the linear polarization
on the cross section pertaining to a radiation process.

The application of this expression depends on whether
the radiation is emitted or absorbed.

(a) For the case that a photon beam is emitied, the
observed linear polarization of this photon beam
referred to the direction e is

do(e) —do(€’)

Py(e) = ———r—= 5.16
L( ) da(e)—l-da(e’)’ ( )
where €’ is perpendicular to e; specifically,
e’ = —sin Pe®}-cos Pe®, (5.17)

The polarization may most conveniently be expressed
in terms of ® as

da(®) —do (®+7/2)

Pr(®) = . .
UR) = 3@ Fdo(@tn/2) (5-18)
By the use of the expression (5.15) one obtains
Pr(®) =Prcos (28—27). (5.19)
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Here v is given by

tan 2’y=2 Re Mlz/(Mu—Mgz) ) (520)
and Py, is the maximum linear polarization
PL= { (Mu—Mzz)2+4(Re M12)2}1/2/(M11+M22) .
(5.21)

The direction of the maximum polarization is, according
to Egs. (5.19) and (5.20), given by ®,=v, or

tan 2®,=2 Re M/ (Mu—Mz).
Equation (5.21) may also be written in the form
M11M22— (Re Mu) 2]}”2
Pr=13{1—4 5.23
- { [ (Mu+Ma)® (529

which shows that complete linear polarization occurs
when

(5.22)

(Re My2)?=MnMs, (5.24)

and that a finite difference between MuM, and
(Re Mys)? results in a decrease of linear polarization.

When the coordinate axes € and e® are oriented so
that e® is along e, the linear polarization given by
(5.23) becomes

Pr=(Mu—Mz)/(Mu+Ms), (5.25)

and complete linear polarization occurs only when one
of the functions My or M vanish, ie., when the
intensity of the radiation polarized along e® or e®
vanishes.

(b) For a process in which a partially linearly
polarized photon beam is absorbed, the cross section is
given as an incoherent superposition of the contribu-
tions from the two polarization states described by e
and e’, Egs. (5.14) and (5.17),

do=wido(e) +w:do(e’) (5.26)
or

do=wdo (®) +wido (®+7/2), (5.27)

where w; and w, are the probabilities for photon
polarizations in the directions given by e (or ®) and
e’ (or ®+x/2), such that wi+w,=1 and wi—w,= Py,
the magnitude of the linear polarization of the initial
photon beam. One finds, using the expression (5.15)
that

da'NMu+M22+PL[ (Mu—Mzz) cos 2%
+2(Re My) sin 28], (5.28)

In most cases it is convenient to choose the polarization
direction as one of the coordinate axes, e.g., e=e®
(i.e., #=0), and thus Eq. (5.27) becomes

do~Mu~+Mo+Pr(Mu—Ms). (5.29)

2. Circular polarization

For the case of circular polarization, the electric and
magnetic field strengths of the radiation rotate with
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constant amplitudes. From Eq. (5.08) it follows that
e is given by

e=(1/VZ) {eWise®}, (5.30)

where 6 is -1 and —1 for right-handed and left-handed
circular polarization, respectively. The circular polariza-
tion vector §, Eq. (5.10), is given by

E=oe® xe® =0k, (5.31)

where k=Ik/k. A right-handed-polarized photon is thus
characterized by §=k and a left-handed-polarized
photon by §=—k.

The expression (5.12) proportional to the cross
section for this case becomes

da (&) ~Mu—+Mau+ (Im M ;) dijute
=Mnu+Mn+26(Im My). (5.32)

This expression gives the dependence of the cross
section on the circular polarization of the radiation.
As for the case of linear polarization the application of
(5.32) depends on whether the radiation is emitted or
absorbed:

(a) For the case that a photon beam is emilied in the
process, the component of the circular polarization of
the radiation along § is given by

do(§) —do(—§)

p.f= LS/ 0TS .
5% G (®) o (=D (539
or according to (5.32)

Po-E=[(Im M ;) dju/ (Mu~+Ma) J&, (5.34)

so the circular polarization vector of the photon beam is
Po=[(Im My)duiee/ (Mu+Mn) T
= [2 Im Miz/ (M11+M22) ]ii. (535)

(b) For a process in which a partially circularly
polarized photon beam is absorbed, the cross section is
given as an incoherent superposition of the contribu-
tions from the two polarization states specified by §
and —§,

do=wdo (§) +wida(—§), (5.36)

where w; and we are the probabilities for circular
polarizations in the directions § and —§, respectively,
such that wi+w,=1 and such that the circular polar-
ization of the photon beam is

P,= (wi—w) . (5.37)
From (4.32) we find
dO’NM11+M22-|—(Im M,J) 5,jkPk. (538)

3. Elliptic polarization

The general case of elliptic polarization of a photon
beam is described by Eq. (5.12). Analogous to the case
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of linear polarization in Eq. (5.14), the vector € may
for the case of elliptic polarization be written

e=(a cos ®—18b sin ®)eM+-(a sin $-+i8b cos )e®,
(5.39)
where the real, positive numbers ¢ and b satisfy
@+ =1 (5.40)

and ¢ is equal to +1 and —1 for right-handed and
left-handed elliptic polarization, respectively. The ratio
a/b is the ratio of the axes of the polarization ellipse, so
that a/b=1 for circular polarizations and a/b is infinite
or zero for linear polarization. The angle ® is the angle
between the e® axis and the ellipse axis represented by
a. The special cases of linear and circular polarizations
are obtained from (5.39) by setting ¢b=0 and a=b=
1/V2, respectively.

When this expression for e is introduced into Eq.
(5.12), one obtains

da’(e)N]l’In'f‘Mzz-lh[(Mn—Mgz) cos 2®
+2(Re M) sin 28] (a?— ) +45ab(Im M). (5.41)

The polarization vector e’ describing the opposite
state of elliptic polarization relative to e in Eq. (5.39)
is obtained by interchanging the axes of the polar-
ization ellipse, i.e., interchanging ¢ and & and by
reversing the sense of rotation of the radiation field
(i.e., changing the sign of §). One finds

€’ = (b cos ®+ida sin ®)eM - (b sin —ida cos D)e®,
(5.42)

We note that as for the case of linear polarization the

polarization vectors corresponding to opposite states of

polarization are orthogonal to each other; here e-e’*=0.
Corresponding to Eq. (5.41), we find

do () =Mu+Mop—[(Mu—Ms) cos 2®
+2(Re My) sin 28] (a2—b%) —48ab(Im My). (5.43)

From Egs. (5.41) and (5.43) the special cases of linear
and circular polarizations are obtained by setting
ab=0 and e=b=1/V2, respectively [compare Egs.
(5.15) and (5.30)].

(a) For a process in which a photon beam is emitted,
the elliptic polarization of the beam is

do(e) —do(e)
do(e)+do(€’)
which according to Egs. (5.41) and (5.43) becomes
Pa,b, s, ®)
={[(Mu—Mz) cos 2®+2(Re My;) sin 2&](a*—b?)
+46ab(Im M) }/ (Mu+Ma). (5.45)

The maximum elliptic polarization, usually called the

P,(e) = (5.44)
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elliptic polarization of the beam is found to be given by
Po={(Mu—Mn)*+4 | My P}/ (Mu+Mn) (5.46)

which, according to Egs. (5.21) and (5.35), may
be written

Po={Pp+P2}, (5.47)

The elliptic polarization is thus given by the observed
linear and circular polarization. The magnitude P, is
determined by Eq. (5.47). The direction of the major
axis of the polarization ellipse is determined by the
linear polarization (through the angle ®) and the
handedness of the elliptic polarization is determined by
the circular polarization (through the quantity &) as
is apparent from Eq. (5.41).

It should be noted that for a completely differential
process, where no integrations over angles and no
summation over polarization spin states for any of the
particles have been performed, then M,; is proportional
to the absolute square of the matrix element, so that

My=M M}, (5.48)

where Me; is proportional to the matrix element. It
then follows immediately that

I My |2=M11M22, (5.4-9)
and we find from Eq. (5.46) that
P.=1. (5.50)

Photons emitted in a completely differential process are
thus completely elliptically polarized.

(b) The cross section for a process initiated by the
absorption of a partially elliptically polarized photon
beam is given by

do=wido(e) +wydo(e’), (5.51)

where w;4we=1 and w;—ws=P,. From Eqs. (5.41)
and (5.43) we find

do~Mu~+Ma+Po{[ (My—Ms) cos ®
+2(Re M1p) sin 28] (a2—8?) +46ab Im My}, (5.52)

where ® is determined by the directions of the axis of
the polarization ellipse, ¢/ by the ratio of the ellipse
axis, and 8 by the handedness of the polarization.

C. Dependence of the Pair Cross Sections on the
Polarization Variables

The differential cross section for pair production
including polarization effects is of the form

o688, ) _ e { Ft. £+ Foe. £, F-
TS =C{F*+F+F-E+F+ L +F-- L

S Fite. - F—ee LA FHE L+ F-E. L
FF 8y S Foftdey § i Fifts= 8y & ity
(5.53)
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TaBLE 5.01. Polarization effects in pair production.

Incident photon beam

Unpolarized With linear polarization, Py, e With circular polarization, P,
&% /dE1d9,d0_ Exact 4CPo AC[FO+PLFe] 4C[Fo+ P, FE]
Born 4CFo 4C[F*4-PLFe] 4CF?
P, Exact Fé+/Fo (FS+-P FS+9) / (FO4-PyFe) (FS+-PFEE) [ (P04 P, F¥)
Born 0 0 P,,Ff+-E/Fo
o /dE,dQ, Exact 2CF° 2C[Fo+PLFe{1—2(1i-e)?} ] 2CFo
Born eee .
P, Exact B/ (FS++4-PFS+e) / (Fo+ PLF?) (FS++PJS+8) [0
Born 0 0 PFS+k/Fo
do/dE, Exact 20 20[Fo+PLi0] 200
Born eee .
P, Exact 0 0 P.gt/50
Born 0 0 Pi‘ﬁ'e/ﬁ
where and the axial vector §, viz. §-k x p,. vanishes, since § is

C=4[Z%ard/ (20)* N ELE[1—F () }/k*¢"}

and where the F coefficients give the correlations be-
tween the various polarizations and momenta of the
photon, positron, and electron. These coefficients are
given in Table 6.10 for the cross-section formulas with
polarization dependence for Born approximation cal-
culations and for high-energy, exact calculations. The
coefficients F¢, Ff= F¢+e and F,f+4~+% describe polar-
ization-momentum correlations and are accordingly
absent in the first-order Born calculation (Olsen, 1968).
The rest of the coefficients describing terms in the cross
section which contain two of the polarization vectors
¢, ¢ or § are polarization—polarization correlation
coefficients. These coefficients have in general finite
values also in first-order Born calculations.

The cross-section differential in positron energy and
emission angle is obtained by integrating Eq. (5.53)
over electron emission angles. The result may be
written

dzo-(e) g? c+) ({770 Fe(1— e |2 Ft+.
S SOUPF(1=2 | we ) +F,

FFre AR L), (5.54)
where

é= (aZZroz/27r) (E+/k3) .

The unit vectors e and ;. are defined in Sec. II, u is
defined in Table 6.10A, and the coefficients F?, Fe, etc.,
which have been calculated, are given in Table 6.09 for
Born approximation formulas and for high-energy,
exact formulas. It is to be noted that the coefficient
F¢ corresponding to F% in Eq. (5.53) vanishes, since the
only scalar which may be formed of the vectors k, p,.

parallel to k.

The cross-section differential in the positron energy,
obtainable from Eq. (5.54) by integration over positron
emission angles, is of the form

do(§, ¢y)/dE, =C[F+F+E-,],  (5.55)

where
C=%aZ2rik.

The coefficient F° gives the spectral dependence of the
cross section while P f8+/F° (Table 5.01) gives the
magnitude of the average polarization of the positron
beam, a quantity only meaningful for high energies,
produced by a photon beam of circular polarization P,.
The coefficients £ and F+ are given in Table 6.08.

The more complete expression containing also the
correlations between the positron and electron polar-
ization is given for high energies as (Olsen and
Maximon, 1959)

do’(g, €% (—)

oE, =C(Fo+-Fg- +F-E- L

—(E2+E2) (Ya—#n) (k- k
+2ELE_[ (Y1—3n) Lo A3ty kK]
— 3k {Ly - L a—2 Re [0l -e¥]}),

where ¥~ is obtained from the Formulas for F+ in
Table 6.08 by interchanging E; and E_.

The polarization dependence of the above pair cross
sections makes possible the detection of photon polar-
ization and the production of polarized electrons and
positrons by the pair process. This dependence is given
by the various F coefficients which are introduced in

(5.56)
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Eqgs. (5.53), (5.54), and (5.55), and which are defined
in Tables 6.08, 6.09, and 6.10. As shown in the following
sections, D and E, these coefficients have the following
significance:

(a) Feor F is associated with the detection of linear
photon polarization, (b) F¢ is associated with the
detection of circular photon polarization, (c) Fs*#
Pt or Fxt is associated with the production of
polarized electrons and positrons by circularly polarized
photons, (d) F¢+&-, [¥+i= or Fs+4- is associated with
the production of correlated polarizations of electrons
and positrons by unpolarized photons, and (e) F¥* is
associated with the production of polarized electrons or
positrons by unpolarized photons.

Examples of the quantitative effects of polarized and
unpolarized photon beams on positron (or electron)
polarizations and on cross sections involving positron
(or electron) detection with polarization insensitive
detectors are given in Table 5.01. A summary of the
various cross-section formulas which may be derived
from Egs. (5.53), (5.54), (5.55), and (5.56) is given in
Table 6.03. These formulas may be used to determine
the polarization of a photon beam as described in Sec.
V.D, or to produce polarized electrons or positrons as
described in Sec. V.E.

D. Determination of Photon Polarization by the
Pair Process

1. Linear polarization

The linear polarization of a photon beam may be
detected by the pair process, as proposed by Yang
(1950) and Berlin and Madansky (1950). This method
has been discussed in further detail by Wick (1951)
and Maximon and Olsen (1962).

The linear polarization P of the incident photon
beam is determined from measurements of the pair
particles emitted in different azimuthal directions with
respect to a given photon polarization plane (e, k).
The number of particles, N or Nz, which are measured
by a detector positioned parallel or perpendicular,
respectively, to the polarization plane are given by the
equations

N1=A4 [‘wldd(e, d, = 0) +wodo (e’, ‘I’ﬂ: =0) ],
Ny=A[wdo (e, dp=3%7)+wid(e/, Br=37)], (5.57)

where A is a constant that depends on the incident
number of photons and the number of atoms per cm?
in the scattering foil, w; and w, are the probabilities for
photon polarizations in the orthogonal directions e and
e/, respectively, and ®. is the azimuthal angle of the
pair particle measured with respect to the (k, ) plane.
The cross sections do in Eq. (5.57) have a functional
dependence on ®. and on the unit vectors e and e’ for
linear photon polarization as given by the coefficients
Fe or F* in Tables 6.10 and 6.09. In addition, these cross
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ASYMMETRY RATIO, R_
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ad /B

Fic. 5.01. The asymmetry ratio Ry, which is defined in Eq.
(5.58) and is calculated by Maximon and Olsen (1962), for the
analysis of linear photon polarization. Ry, is evaluated for equal
energies, E,=FE_=Fk/2, as a function of A®/B for complete
screening where 8=21/3/111. The azimuthal angle ® is defined
in Fig. 5.02 and it is equal to zero when the pair particles are
coplanar. Curve a gives the exact small-angle results valid for
A®PK1, with the pair particles observed emergent over angular
region 2A®. Curves b and c give all pair particles observed except
those absorbed by a wedge of angular width 2A®<«1, with Z =29
in curve b and Z=78 in curve c.

l

|
3 8

sections are integrated over the solid angle subtended
by the detector, and they may have the form that is
differential with respect to the particle energy if the
particle detector is a spectrometer.

The linear polarization Pr, may be expressed in terms
of the measured asymmetry ratio rz=N;/N., and the
theoretical asymmetry ratio Rz, which is given as

Ry=do(e, ®,.=0)/do(e, Dp=1r)

=do(e’, ®.=1r)/do(e’, 8.=0). (5.58)
The theoretical ratio Ry, is obtained for complete linear
polarization (Pr=1), and the factor by which it differs
from unity may be considered as a figure of merit with
which to gauge the sensitivity of the pair process to
linearly polarized photon beams. From Eqgs. (5.57) and
(5.58), the linear polarization is given by the equation

Pr=[(Re+1)/(Re—1) L (rz—1)/(rz+1) 1.

Maximon and Olsen (1962) give quantitative results in
which Ry is evaluated for the case of all nearly coplanar
pairs and of all except the nearly coplanar pairs. The
latter arrangement offers better discrimination for the
measurement of linear photon polarization, as shown by
the curves for Ry in Fig. 5.01 for the case of equal
energy partition (E,=FE_=3k), with the pertinent
angles defined in Fig. 5.02,

(5.59)
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Fic. 5.02. Pair-pro-
duction angles related
to the detection of lin-
ear photon polarization.
The azimuthal angles
®,, and &_, and P are
measured in the XY
plane, such that &=
7— (&.—&,). The an-
gular region covered by
@, from zero to a max-
imum value of =, is des-
ignated as A®.

2. Circular polarization

The circular polarization of a photon beam may be
detected by the pair process, as discussed by Olsen and
Maximon (1962) and Kolbenstvedt and Olsen (1965).
This method requires azimuthal asymmetry measure-
ments of the electrons emitted with respect to any
specified emission plane (k,p;) for the positron.
Analogous to the treatment of linear polarization in
Sec. V.D.1, the theoretical asymmetry ratio R for
circular polarization is given as

R.=do(§, &) /do(E, &_+)
=do(—§, —®-)/do(—§, —P_—m), (5.60)

where the cross sections do have a functional dependence
on the electron azimuthal angle ®_, which is measured
with respect to the positron emission plane (%, p,),
and on the unit vector § for circular photon polar-
ization, as given for example by the coefficient F¢ in
Table 6.10. For the specific geometry shown in Fig.
5.03 where 0,=6_, E,=3%k, and ®_=3r such that
k=k/| k|=uxv/|uxv]|, Kolbenstvedt and Olsen
(1965) have evaluated R, as a function of 6, for differ-
ent photon energies, and their results are given in Fig.
5.04. For the case in which the cross section is integrated
over the angles, 6, 6—, and (®;—%_) from O to , the
Olsen-Maximon calculations (1962) for high energies

Fic. 5.03. Pair-production angles related to the detection of
circular photon polarization. In this geometry, the azimuthal
angle ® in Fig. 5.02 is equal to =/2, such that the momentum
components 1 and v are orthogonal.
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and complete screening give
(EL4E ) 2nrIn 2
(Ef+E2+3E.E) In (1832718) —§E E_°
(5.61)

With the above available data for R,, the circular
polarization is given by the following equation:

Pc°g=[(Rc'l'l)/(Ra—‘l):":(rc_1)/(rc+1)]1 (5.62)

where 7, is the asymmetry ratio measured in the
particular geometry and at the azimuthal angles for
which R, was evaluated.

Ra= (aZ)

20 T T T T T

| l ! | |
[¢] 30 60 90 120 150 180

6:

Fic. 5.04. The asymmetry ratio R,, which is defined in Eq.
(5.60) and is calculated by Kolbenstvedt and Olsen (1965),
for the analysis of circular photon polarization. The ratio aZR,
is evaluated as a function of the emission angle 8, for right-handed
circularly polarized photons, with 0, =0_ and E;=E_=Fk/2. The
numbers attached to the curves give the photon energies in
megaelectron volts.

E. Production of Polarized Electrons and Positrons
by the Pair Process

1. Polarized electrons and positrons by
circularly polarized photons

The electron or positron beams emitted in certain
directions by circularly polarized photons in the pair
process may have a certain degree of polarization, as
shown, for example, in Table 5.01. For the case where
the positron is not observed, the longitudinal and
transverse polarizations P_* and P_7, respectively, of
the electron beam are given by the following equations:

po_y, Po(Po L)/dEd0 —do(Py —L)/dEd0
=T Pe(P,, ) /dE_dQ P (Ps, — L) /dE_dQ_’
(5.63)




with p_+¢ =1 or n-{_=0 for longitudinal polar-

ization, and

PTen &0 (P,, ) /AE_dQ_—d?*0(P,, — () /dE_dQ_
T @0 (P,, L) /dE_dQ_+d% (P, —{_)/dE_dQ_’

(5.64)

with p_+{_=0 or n-{_=1 for transverse polarization.
These polarizations involve the coefficient F¥—+#, which
is given in Table 6.09. For high energies, Olsen and
Maximon (1959) have shown that
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(E{*4-E-2) (342T) +2E,E_(1+44°%T)
(5.65)

where the various quantities are defined in Table
6.09B and in Sec. II. As shown in Fig. 5.05, the trans-
verse polarization is always small while the longitudinal
polarization may be large. The mean (integrated over
the electron emission angles) longitudinal polarization
of the electron beam is shown in Fig. 5.06, and for
photon energies greater than approximately 20 MeV
this polarization may be written in the simple form
(Olsen and Maximon, 1959)

P_L=(4E_—Fk)k/(3F2—AE.E.).

P L=n P,

(5.66)

19 T T | —

500-MeV PHOTONS
— ON LEAD

ELECTRON POLARIZATION, P.

6
E_/k

F1c. 5.05. Longitudinal, P_Z, and transverse, P_T, polariza-
tion of electrons produced by 1009, circularly polarized 500-MeV
photons in lead, as calculated by Olsen and Maximon (1959).
The numbers attached to the curves give the values of 6_ in
milliradians. [Numerical errors occurring in Figs. 7 and 8 of
Olsen and Maximon (1959) have been corrected here.]

F1c. 5.06. Longitudinal polarization P_L of electrons produced
by 1009, circularly polarized photons in lead, as calculated by
Olsen and Maximon (1959) with the inclusion of Coulomb and
screening effects. Also, results are given for the spin correlation
terms defined in Eq. (5.67), Cy and Cu, for longitudinal and
transverse spins, respectively. The results are integrated over the
electron emission angles and are shown for incident photon ener-
gies of 20 MeV and 1 BeV.

2. Correlated polarizations of electrons and
positrons by unpolarized photons

If the polarizations of both pair particles are recorded,
a correlation C of polarization is obtained:

_do(8=0) —do (L =—1)

C= .
do(L=0)+do({=—1)

(5.67)

In particular, the average polarization correlation of the
electron—positron beam may for energies £>20 MeV be
written in the simple form

C=[4E_E,— ({+k)¥]/(3k*—4E_E;). (5.68)
Curves for Cy (for longitudinal spins, ¢-k=1) and for

Cy (for transversal spins, {;-k=0) are given in Fig.
5.06.

3. Polarized electrons or positrons by
unpolarized photons

When the momenta of both pair particles are ob-
served in coincidence it is possible to obtain polarized
electrons or positrons through momentum-polarization
correlations (Olsen and Maximon, 1964) of the form
(p+xp-+£€.). It should be pointed out that pair
production, through this correlation, is the only elec-
tromagnetic process in which strongly polarized high-
energy particles are produced from initially unpolarized
particles. The longitudinal and transverse polarizations
may be considerable as displayed in Fig. 5.07.
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F16. 5.07. Longitudinal and transverse polarization, P_L and
P_T, respectively, of electrons which are detected in coincidence
with the corresponding positron for the case where the emission
planes are orthogonal, as given by Olsen and Maximon (1964).
The data for P_L is given for the case of maximum polarization
where E_=k, and the data for P_T is given also for the optimum
case where E_.=Fk/V2. These polarizations are produced by un-
polarized photons.

VI. CROSS-SECTION FORMULAS FOR PAIR
PRODUCTION IN ATOMIC FIELD

The cross-section formulas for pair production in an
atomic field are given for the various differential and
integrated forms that have been calculated. The
formulas for a particular cross-section form are classified
according to the approximation used in the calculation
(first Born or exact with relativistic, screening, or
nuclear-size approximations as discussed in Sec. IV).
A quantitative summary of these approximations is
given in Table 6.01, and each formula is accompanied
by a list of the conditions of validity which are identified
by the letters in Table 6.01.

Each cross-section formula is identified by a label
with six elements. The first two elements are a number
and a letter which are used to uniquely identify the
process under consideration; in this case, the pair-
production process as distinguished from other Coulomb
processes. With regard to the pair process, the next four
elements are digits which serve as convenient indices for
locating a particular formula: the first digit gives the
number of differential variables in the formula, the
second digit gives the number of polarization variables
in the formula, the third digit is an index which uniquely
specifies a particular combination of the variables given
by the first and second digits, and the fourth digit is an
index (ranging from 0 to 9) which identifies the 10
types of calculations successively listed by the different
columns in Tables 6.02(a) and 6.02(b).

Summaries of the available cross-section formulas for
pair production in an atomic field are given in Tables
6.02(a), 6.02(b), and 6.03. Tables 6.02(a) and 6.02(b)
give the formulas which are summed over the photon
and electron polarization states and therefore which are
not dependent on the polarization variables for these
particles. Table 6.03 gives the formulas in the forms
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which show their functional dependence on various
combinations of the polarization variables for these
particles. The application of the formulas in Table 6.03
for determining the polarization of the particles in-
volved in pair production is discussed in Sec. V. The
blank spaces in each table indicate that a formula is
not available.

The formulas for the various differential cross
sections are given in a form which is differential in the
positron variables. To obtain corresponding formula
differential in the eleciron variables, the following
changes should be made in the differential formulas
given below:

(a) Replace E;, E_, py, p—, and Z, respectively, by
E_, Eq, p_, py, and —Z to convert do/dE, to do/dE_.

(b) Replace Ey, E_, p4, p—, 64, and Z, respectively,
by E., Ey, p-, P+, 8-, and —Z to convert d’s/dE,.dQ,
to d’¢/dE_dQ_. For the polarization-dependent for-
mulas, also replace {4 by {_.

(c) Replace Ey, E_, and Z, respectively, by E_, E,,
and —Z to convert d%c/dE dw to d?s/dE_dw.

For most cases, the nuclear recoil is negligible so that
k=E,+E_, and the conversion procedure for the above
differential formulas is simple. For these cases of
negligible nuclear recoil, the cross sections differential
in the positron variables may be interpreted in terms of
the cross sections differential in the electron variables
by making the simple substitution that E.=k—F_.

TaBLE 6.01. Conditions of validity for pair-cross-section formulas.

A. First Born approximation:

aZ/By, aZ/B-K1
or -~
aZ/BK1

such that B, =E_=Fk/2, with g, =g_= (1—4/k2)1

or
[ez/(1—-4/R)V¥]K1

. No screening: aZ'3k<<1

. Complete screening: aZ3%>>1

g o =

. Extreme-relativistic energies: E,., E_, &>1

=

. Negligible nuclear recoil: ¢><Kknt./mq

This condition is obtained if my<Kkm,, ie., always for
small-angle pair production, or if 2<&m, for large-angle pair
production.

F. Small angles: 6,=0(1/E,),0_-=0(1/E_)
G. Large angles: 0, >1/E,

H. Exponential screening: F(g) =[1+ (Rrrg)?]™?
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TaBLE 6.02. Cross-section formulas for pair production in an atomic field without atomic excitation.?

Formulas®
First Born Exact
Pair cross
section UPN UPN-ER SPN SPN-ER FN UPN UPN-ER SPN SPN-ER
2 3D-0000 3D-0001 3D-0003 3D-0006 3D-0007 3D-0009
Racah Heitler— Bethe- Qverbg-  Davies— Davies—
Sauter Heitler Mork- Bethe- Bethe-
Olsen Maximon Maximon
do/dE,P 3D-1000 3D-1001 3D-1003 3D-1006 3D-1007 3D-1009
Bethe- Bethe— Bethe- @verbg-  Davies— Davies—
Heitler Heitler Heitler Mork— Bethe- Bethe—
Olsen Maximon Maximon
do /dQ, 3D-1010
Jost~
Luttinger—
Slotnick
ds/dP, 3D-~1020
Borsellino
do/dq 3D-1032
Jost—~
Luttinger—
Slotnick
&% /dE dQ,P 3D-2000 3D-2003 3D-2007 3D-2009
Sauter— Schiff Olsen— Olsen
Gluckstern— Maximon Maximon
Hull
d*s/dE dwb 3D-2011 3D-2013
Olsen Olsen
d*c/dE,dQ,dQ_P 3D-3000 3D-3001 3D-3004 3D-3007 3D-3009
Bethe- Bethe- Bjorken— Bethe- Bethe-
Heitler Heitler Drell- Maximon Maximon
Frautschi

8 This process is also designated as elastic or coherent pair production.
The formulas are classified under the two main categories of First Born
or Exact with the following subdivisions: UPN =unscreened point nucleus;

TaBLE 6.02(b). Cross-section formulas for pair production in an
atomic field with atomic excitation.*

Pair

cross section Formulas®

3D-0005
Wheeler-Lamb

3D-1005

do/dE, Wheeler-Lamb

8 This process is also designated as inelastic or incoherent pair production.
The only,formulas available for this process which are given in the above
table_are calculated with the first Born approximation,

FN =finite nucleus;
nucleus.

b The cross sections which are differential in E_ rather than E, may be
obtained by the procedure discussed in Sec. VI.

ER =extreme relativistic; SPN =screened point

For example, in Figs. 6.04 to 6.08 and in Fig. 6.12, where
the differential cross sections are given as functions of
the positron energy E,, the corresponding differential
cross sections as functions of the electron energy E_ are
obtained by substituting E;=£k— E_. This substitution
procedure is equivalent to reading the abscissa from right
to left since (Ey—1)/(k—2) =1—(E_—1)/(k-2).
Pair production in an atomic field may occur without
atomic excitation (also designated as “elastic” or
“coherent” pair production) and with atomic excitation
(also designated as “inelastic” or “incoherent” pair
production). These two processes which have different
final states are independent of each other, and the cross
sections for the two processes are additive. Therefore,
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TaBLE 6.03. Cross-section formulas with polarization dependence for pair production in an atomic field.

Differential

Photon beam
with circular polarization

Photon beam
with linear polarization

Photon beam
with no polarization

pair cross

section

Polarization variables Polarization variables

Polarization variables

&4 £ &4 L

14
3D-100N 3D-1229

e e, &

€, §+
3D-100N 3D-100N 3D-100N

3D-2132
3D-2139
3D-2131
3D-3139

(+ (—- (+; (—

3D-100N 3D-100N 3D-100N

None
3D-200N

do/dE.®»

3D-2242
3D-2249
3D-3249

&0 /dE,d0,

XX

3D-3149

3D-3229

3D-300N 3D-3119

&/, dQ,d0_>

-+ indicate that the formulas are not available.

. The blanks -

Integers from 0 to 9, as given in Table 6.02. See discussion in Sec. VI for conversion from E, to E_ and {4 to {-

&N =

any given form of the pair cross section, such as o or
do/dE,, is equal to the sum [o(elastic) o (inelastic) ]
{or [do/dE, (elastic)+do/dE, (inelastic)]}. The
major contribution to this sum comes from the “elastic”
component, and except for low-Z atoms (as shown in
Fig. 8.01), the ‘“‘inelastic” component is negligible.
The formulas in Table 6.02(a) apply to pair production
without atomic excitation (“‘elastic” or “coherent”),
and the formulas in Table 6.02(b) apply to pair
production with atomic excitation (“inelastic’” or
“incoherent’).

Cross-section calculations for pair production with
atomic excitation must account for the contributions of
the atomic binding, the exchange character of the inter-
action, and the energy transfer to the recoil electron.
The only calculations for pair production with the
inclusion of atomic excitation and ionization effects
have been made in the first Born approximation by
Wheeler and Lamb (1939), and their results are given
by Formulas 3D-0005 and 3D-1005 in Table 6.02(b).
It is important to note that these formulas apply to the
process in which pair production occurs in ax atomic
field. If atomic ionization is involved, an electron is
liberated with the production of a triplet. This process of
triplet production in an atomic field should not be
confused with the triplet production in an electron field
which is discussed in Sec. VII.

At extreme-relativistic energies, it is necessary to
account for nuclear recoil and size effects for the
observation of large-angle pair production. Such
calculations are given in the first Born, [finite-nucleus
(FN)] column in Table 6.02(a). Otherwise, the for-
mulas in Table 6.02(a) apply to pair production with a
negligible energy transfer to the nucleus (negligible
nuclear recoil) such that q%<Zkm,/mq.

It should be noted that the cross-section formulas in
Sec. VI and the kinematic relations in Sec. IIT may be
applied to all processes involving the production by
photons of any pair of particles (such as muon pairs),
providing the rest mass of the pair particle is substituted
for the electron mass my. Also, certain bremsstrahlung
formulas may be derived from the corresponding pair
formulas as follows:

(a) The bremsstrahlung differential cross section
d&*s(k, p1)/dkd, is obtained from the corresponding
pair cross section d’o(ps, k)/dE,dQ, by substituting
—FEy, —p1 for Ey, py, &, k for —k, —k, and dkd, for
dE.dQ,, and by multiplying d?s(py, k) /dEdQ, by the
factor k2/p2. In these expressions, p; and E; are the
initial electron momentum and energy, respectively, in
the bremsstrahlung process, and d@ is the element of
solid angle in the direction of k relative to p:.

(b) Provided the recoil energy is negligible such that
k=E,+E_, do(k, p1)/dk is directly obtainable from
do(py, k) /dE, by substituting —E; for E,, k for —k,
dk/ for dE;, and by multiplying do(py, k)/dE+ by
/b
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Formula 3D-0000

[The Racah Formula: Unscreened Point Nucleus]

B 692-+ 468¢-+ 76+ 108¢* 692+360c+692¢ . 4(1—e)? r*K(n) dn
”_“ZW[ 27(14¢)° K- 27(1+e)? E(9 (1+e)2/ 1—7
16(1—e)? ¢ dt K(n) dn]
T axor fol—;z 1— |’

where K (x) and E(x) are the complete elliptic integrals of the first and second kind, respectively, of argument «

(Abramowitz and Stegun, 1964, p. 589), and

e=(k—2)/(k4+2).

A. The above Racah Formula 3D-0000 has been reduced by Maximon (1968) to the following simple analytical
expressions containing rapidly convergent series expansions:

(1) For k near threshold such that 2—2 S1,

o=ol rd 3(k 2)[1+-e+ €2+—€3+I§5€4+-o.]

k

120

k—2 23
= aZry —3~( )[1+ a+ —612+ "‘613+ 6‘6—(')€1+ * ]

k

where the second series is more rapidly convergent, and

and &=2¢/[1+(1—€)12].

e=(k—2)/(k+2),

The first term in either of the above expansions reduces to the threshold formula previously obtained by Racah
[1934, Formula (12)] and by Nishina, Tomonaga, and Sakata [1934, Formula (4)].

(2) For larger photon energies with k>4,

28 1 2 2
o=l {3 In 2k— 2 8 5+ ( )[6 In 2k— g+ §1n3 2k—1In? 2k— ;—r—ln 2%+ ’6'—+2§(3)]

-(

where

3 17 /2 29 7
) [T& In 2%+ §] - (%) [9)(256 In 2k— 27><512] T } ’

e 1
¢(3) = Z;L; =1.2020569 . . .

n=1

The first two terms in the above expansion reduces to the high-energy Formula 3D-0001 given by Racah [1936,
Formula (12)7, by Bethe and Heitler [1954, Formula (14), p. 260], and by Hough (1948).

(1) Conditions of Validity
Table 6.01: A, B.

(2) References

Racah (1934), Formula (10) with correction given by Racah
[1936, Formula (10), p. 697.
Maximon (1968), Formulas (9), (10), and (12).

(3) Notes

a. The Racah formula has been evaluated by Maximon (1968)
as a function of the photon energy. Maximon’s results are given

in Table 6.04 and in Figs. 6.01 and 6.02. Figures 6.01 and 6.02
compare the pair cross sections predicted with Born approxima-
tion calculations (3D-0000) and with exact calculations (3D-0006
and 3D-0009) for Z=82. General agreement with the exact
calculations has been obtained from various experimental results,
examples of which are given in the following references: Rosen-
blum, Shrader, and Warner (1952) (5.3, 10.3, and 17.6 MeV);
Dayton (1953) (1.33 and 2.62 MeV); Staub and Winkler (1954)
(6.3 MeV); West (1956) (1.17 and 1.33 MeV); Rao, Laksh-
minarayana, and Jnanananda (1963) (1.12 MeV); Yamazaki
and Hollander (1965) (=1.1 to 2.0 MeV) ; Titus and Levy (1966)
(2.62 MeV); Roche, Avah, and Isabelle (1968) (2.62 MeV);
and Garritson and Miller (1968) (=1.1 to 2.0 MeV)
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Formula 3D-0001

[The Heitler-Sauter Formula: Unscreened Point Nucleus for Extreme-Relativistic Energies]

28 218
cr=aZ21’02 [; In (Zk) — "27]
(1) Conditions of Validity (2) References

Table 6.01: A, B, D. Heitler (1933).
Heitler (1954), Formula (14), p. 260.

Formula 3D-0003

[The Bethe-Heitler Formula: Screened Point Nucleus for Extreme-Relativistic Energies]

28 2
o=al’r’ [? In (1832713) — 57]

(1) Conditions of Validity (3) Notes

Table 6.01: A, C, D. a. Formula 3D-0003 is obtained with the above complete
screening approximation from an analytical integration of For-
mula 3D-1003B. For intermediate screening, Bethe and Heitler

(2) References (1954, Table VI, p. 262) give cross-section values for aluminum
and lead, which were obtained by a numerical integration of
Heitler (1954), Formula (15), p. 260. Formula 3D-1003 (Secs. C and D of Formula 3D-1003).
Formula 3D-0005

[The Wheeler-Lamb Formula: Screened Point Nucleus with Atomic Excitation for
Extreme-Relativistic Energies]

oc=aZri(22.6—2.08In Z)

(1) Conditions of Validity (3) Notes

Table 6.01: A. a. For low atomic numbers, Formula 3D-0005 and Fig. 8.01

show that there is a substantial contribution to the pair cross

(2) References se(':tion from processes in which atomi<.: excitati?n occurs..A d?-

tailed study of the incoherent scattering function used in this

Wheeler and Lamb (1939), integrated form of Formula (20), process and the corresponding pair cross section for helium is
as given by Olsen (1968). given by Knasel (1968).

Formula 3D-0006

[The @verbg—Mork—Olsen Formula: Unscreened Point Nucleus]

o= —dE,,

where do/dE, is given by Formula 3D-1006.
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(1) Conditions of Validity

Table 6.01: B

¥

(2) References

Pverbg, Mork, and Olsen (1968).

(3) Notes

a. This formula is evaluated by @verbg, Mork, and Olsen
(1968) in Figs. 6.01 and 6.03. These figures give the dependence,
respectively, of the cross section ¢ and the cross-section ratio
o/og on the photon energy in the region 2<k<S5, where oz is
the unscreened Racah cross section given by Formula 3D-0000
or by the integration of Formula 3D-1000. In the energy region
where 6<k<30, @verbg, Mork, and Olsen (1968) give the fol-
lowing semiempirical formula for lead (Z=82):

o =0p—4.02-+}(16.8/k) In (k—0.75)

b. Higher-order calculations for the total pair cross section
in the threshold region have been carried out previously by
Nishina, Tomonaga, and Sakata (1934). However, their calcu-
lations have been superseded by the more accurate calculations
of @verbg, Mork, and Olsen (1968). The threshold-region formula
given by Nishina, Tomonaga, and Sakata (1934) may be written

in the form
do/BE,=aZ%?}(k—2)
¢ (27aZ)2S(aZ, k)
[exp (27aZ/Bs) —11[1—exp (—27aZ/B_) 1’
where S(aZ, k) was calculated to the first order in «Z only:
S(aZ, k) =14+[3(aZ)2/64(k—2) J(w2+8) 4+ --.

The formula gives reliable results in the threshold region k—2<1
for light elements aZ<1. For the condition that [2(k—2) 12«
aZk1, the formula (Nishina, Tomonaga, and Sakata, 1934) for
the total cross section is

o=aZ%¢(r/12) (k—2)3(3/x) 3+ (1/x%)]
X {27 Z/[2(k—2) T2}8 exp {—2maZ/[2(k—2) T2}
and for aZ<K[2(k—2) 2«1 the formula is
a=aZ??(w/12) (k—2)3.

c. More data are needed in the threshold energy region in
order to determine the effect of atomic screening on the cross
sections predicted by Formula 3D-0006, although the results
by @verbg, Mork, and Olsen (1968) indicate that this effect
may be as small as a few percent.

d. The various measurements of the pair cross section are
described in the references of Note a for Formula 3D-0000. The
results of these measurements show good agreement with the
values obtained from the Jaeger-Hulme calculations (1936)
which are in agreement with the values predicted by Formula
3D-0006 and by the curves in Figs. 6.01 and 6.03.

Formula 3D~-0007

[The Davies-Bethe~Maximon Formula: Unscreened Point Nucleus for Extreme-Relativistic Energies]

28 28 218
0’=0£Z2702 [5— In 26— —g“f(Z) —_ ——] ’

27

where f(Z) = Coulomb correction function, which is discussed by Davies, Bethe, and Maximon (1954) and eval-

uated in Table 6.05.

(1) Conditions of Validity
Table 6.01: B, D.

(2) References
Davies, Bethe, and Maximon (1954), Formula (44).

Formula 3D-0009

[The Davies~-Bethe~Maximon Formula: Screened Point Nucleus for Extreme-Relativistic Energies]

k1
c=al¥@k
1

where ¥; and ¥, are given in Formula 3D-1009.

L(EP+E)W+3EE ¥, ] dEy,

(a) For the case of complete screening such that aZ3£>3>1, Davies, Bethe, and Maximon (1954) give the fol-

lowing simplified formula:

28 2
c=aZ [3 In (183Z-1/3) — 58- f(Z)— -—] ,

2
27
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where f(Z) = Coulomb correction function, which is discussed by Davies, Bethe, and Maximon (1954) and eval-

uated in Table 6.05.

(1) Conditions of Validity
Table 6.01: D.

(2) References

Davies, Bethe, and Maximon (1954), Formula (45). The
general form for Formula 3D-0009 is given by the integral form
of Formula 3D-1009.

(3) Notes

a. Formula 3D-0009 has been evaluated by Sgrenssen (1965,
1966) for various elements with the Thomas—Fermi-Moliere
form factor and the more accurate Hartree-Fock—Slater atomic
form factors. Sgrenssen’s results show that there is less than
49, differences in the cross sections obtained with the different
form factors. For accuracies better than 19}, form factors other
than those used by Sgrenssen are required, particularly for low-Z
elements, as pointed out by Knasel (1968). Sgrenssen’s results
for lead (Z=82) with the Thomas-Fermi~Moliere form factor
are given in Fig. 6.02 and in Table 6.06. For any other value of
Z, the cross section may be evaluated from the formula given
below in Part b with the scaling function S(Z, Z,) given in
Table 6.07.

b. The cross-section data for lead can be used to evaluate the
pair cross section o(Z, k) for any arbitrary atomic number and
photon energy within the accuracy that can be obtained with
the Thomas-Fermi-Moliere form-factor approximation. This
evaluation can be made by the following scaling formula:

o (Z, k) =aZ?r@{[c(Zs, ko) [aZdrd]1— S(Z, Zy) },

where o (Zo, ko) is the pair cross section which is shown for a
reference atomic number Z, (in this case, Z¢=82) and for &k,
equal to k(Z/Zo)¥3, and where the scaling function S(Z, Z) is
given as

$(Z, Zo) = (28/27) {In (Z/Zo) +3[ 1(2) —f(Zo) ]},

with f(Z) defined in Table 6.05. Values for the function S(Z, Zo)
for Z,=282, are given in Table 6.07. In the threshold region, there
are no calculations which include both screening effects and
Coulomb corrections, and therefore the accuracy of the above
scaling formula in this region is uncertain.

A scaling formula of the above type was given first by Bethe
and Ashkin [Segre, 1960, p. 340, Eq. (126b) J. However, it should
be noted that their equation, which has a misprint, should be
given as

q’pair(Z; k) _ 4>pair(ZOy k(Z/Zo)”s) _ 2_8-1 (é.
32 ®(20) 21\,

Formula 3D-1000

[The Bethe-Heitler Formula: Unscreened Point Nucleus]

— =aZ¥?

ds b
dE, 2

4 2B.E_(p+p) (E+L—
3 P +‘Z 2 p_a

8 E.E-

xR

b+t pap- pt

E(E_—p?

T 3pap

L+

k (E+E_— p2 L

ra)
29—\  p? P4 p2p-2 /170

where Ly =21n (Ey+py), L.=21n (E_+p_),and L=2In [(ELE_+p.p+1)/E].

(1) Conditions of Validity
Table 6.01: A, B, E.

(2) References
Heitler (1954), Formula (8), p. 258.

(3) Notes

a. Hough (1948) has given simplified formulas which approx-
imately reproduce Formula 3D-1000 in the regions where k~2
[(Segre, 1960, Formula (117b)] and where 2<k<15.

b. Formula 3D-1000 gives a symmetric energy distribution
between the electron and positron. This result is erroneous par-
ticularly in the region where either B, or B_<1, because the
nucleus repels the positron and attracts the electron. The ex-

pected asymmetry in the energy distributions for the electron
and positron are brought out in the higher-order calculations of
Nishina, Tomonaga, and Sakata (1934), which are also discussed
by Heitler (1954, p. 259). These latter calculations have been
superseded by the more accurate calculations of @verbg, Mork,
and Olsen (1968), whose results are given in Formula 3D-1006
and in Figs. 6.04, 6.05, 6.06, 6.07, and 6.08.

c. Cross-section values derived from Formula 3D-1000 are
given by the dashed lines in Figs. 6.04, 6.05, 6.06, 6.07, and 6.08,
for photon energies of 1.07, 1.33, 1.79, 2.55, and 3.32 MeV,
respectively.

d. The cross-section formula for 3D-1000 which was given
originally by Bethe [1934, Eq. (21), Proc. Roy. Soc. (London) ],
erroneously contains a plus instead of a minus sign before the
expression in the last set of square brackets. This error was
corrected in the formula given by Heitler [1954, p. 258, Eq. (8)].
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Formula 3D-1001

The Bethe-Heitler Formula: Unscreened Point Nucleus for Extreme-Relativistic Energies]

da‘ E+2+E~2+%E+E_ I: (2E+E_> 1]
— =4alry 1 - -1.
dE, T B "\ 2
(1) Conditions of Validity (2) References
Table 6.01: A, B, D, E. Heitler (1954), Formula (9), p. 258.

Formula 3D-1003

[The Bethe-Heitler Formula: Screened Point Nucleus for Extreme-Relativistic Energies]

do ozZ ro

dE,

where the screening functions ®;(y) and ®.(v) are defined as

Bu(y) =4 { [ eom-r@r ‘;—3} tatinz,

{(E2+E2)[®i(v)—%In ZJ+3E(E_[®(v)—5InZ]},

By(y) =4 f [q3—68’q ln( )+352q—458] [1—F(g)T q+ 1044107,

with y=100k/(E+E_ZY3) and §=k/(2E,E_). F(q) =atomic form factor which is defined in Sec. IT and which
is evaluated for different screening approximations by Motz, Olsen, and Koch (1964, Formula 1A-102).

A. For exponential screening where F(gq) =[1+4 (111¢Z-13)?]1, Formula 3D-1003 can be written as follows
after the proper substitutions have been made in the inverse bremsstrahlung formula given by Schiff (1951),
such that the Schiff formula is multiplied by the phase-space ratio p.dE,/k?dk, and E,; and E; are replaced by —E,.
and E_, respectively:

do 20£Z27’0
dE+

{(E '} E 2 2E. ) [ln M(0)+1— %tan‘l b]

-—E+[ In (14+-8)+ ——— ( bz) tan™! p— -3%2 + g]} ,
where b=2E,E_Z13/111k, and
1/M(0) = (k/2E,E_)*+ (Z'7/111)*
B. For complete screening where y<<1 with the Thomas-Fermi form factor, Formula 3D-1003 can be written as
(Bethe, 1934)
dtr 4aZ ro
dE,

C. For intermediate screening where 0<y<2 and for the Thomas-Fermi form factor, the screening functions
®;(7v) and ®,(y) in Formula 3D-1003 are given (Bethe, 1934; Segre, 1960, p. 262; Koch and Motz, 1959, Fig. 1) in
Fig. 6.09.

The following approximate analytical expression for these screening functions is given by Butcher and Messel
(1960) :

2 [(E2+E2+2E,E_) In (183Z-17)+3E,E_].

@, (v) =20.868— 3.242G+0.625G?,
&y () =20.209— 1.930G+0.086G7,
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for GX1 where G=136k/E.E_Z"3=1.36y, and for G> 1,
&,(y) =21.12—4.184 In (G+0.952),
By(v) =®1(7).

D. For intermediate screening where 2<y<15 with the Thomas-Fermi form factor, Formula 3D-1003 can be
written as (Bethe, 1934)

do 4aZ“’ro R al2 [ 2E.E_. 1 ]
i —— (E*+E2+3EE ) |In p 5 —¢ |,
where ¢(v) is evaluated from the curve in Fig. 6.10.
(1) Conditions of Validity (3) Notes

Table 6.01: A, D, E a. The differential pair cross section predicted by Formula

(2) References 3D-1003 for aluminum is given as a function of the positron
Bethe (1934). energy E, in Fig. 6.11 for £=20.

Segre (1960), Formulas (114) and (115).

Formula 3D-1005

[The Wheeler-Lamb Formula: Screened Point Nucleus with Atomic Excitation]
do
- — ol (B4 ES) () —$1n ZI+H3ELE_[¥2(m)—%In Z]},

+

where v; is equal to 100k/E,E_Z?3, and ¥;1(v:) and ¥y(y;) are the screening functions given by Wheeler and
Lamb (1939, Fig. 1).

A. For extreme-relativistic energies such that £3>(aZ'3)~1, Wheeler and Lamb (1939) obtain the following
formula:

dE =aZrk [ (E2+E-2) (29.1—§ In Z)+2E,E_(284—%1n Z)].
t+

(1) Conditions of Validity (2) References
Table 6.01: A, E. Wheeler and Lamb (1939, 1956), Fig. 1 and Formula (20).

Formula 3D-1006
[The @verbg-Mork-Olsen Formula: Unscreened Point Nucleus]

do
T PR

where

:t+x-M f K 4K E ( 1) (Lo i)/ Z

(L+4n)! ( >" T'(a)

o wl(L—n)I\2k/ (k+pi+tp-)°
L(—M) (e— M) T2
[(2e—1) (2e+4-1) ]2
C(xe+M) (kt-M) ]2
C(2e4+1) (20 —1) 11

X {[(E++1) (E_+1) Tt V(_Ll"M) Re et

[~ 1) (E—1) T VO R
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with

_ (2p)r 1B (2p )P exp [5

7(9++y-) 1 | T(vstiyy) | Tv—~+iy-) |

K4k —

T(2v4+1)T(2y+1)

V(L' M) = (2L+1)[(21_+1) /(2L,'+1) J*2C;_1,(1,/0; 00) Cr_1. (3" M ; MO),

and

Ry *=Tm {exp (—i37) (v4+v——L—1) (K4 K_F3(a; by, b; ¢4, 05 %4, )
=K K _*Fy(a; by, b——1; ¢y, c-; #y, #-) FEFK_Fa(a; b1—1, b—; ¢4y €5 %4, %)

—K*K _*Fy(a; by—1, b-—1; ¢4, x4, 2-) 1},

E Ky K:I:>0 Kd:—l K:|:>0
ye=Za—=;  yp=[kd—(Za) ] Iy ;o W= )
P —ke—1 £:<0 —ky k<0
a=vi+v-—n,  br=vitiystl, cx=2vi+1,  Ki=(yxt+iys) exp (ins),
and 74 is defined by
exp (2iny) = — 4= (92/Ey) - 2p+
Y t+1ys kt+pitp-
Ci.(1,’M; MO) is the Clebsch—Gordan coefficient and F, the hypergeometric function of two variables (Appell
function).
(1) Conditions of Validity and 6.08, in which comparisons are made with the symmetrical
Table 6.01: B. energy distribution predicted by the first Born Bethe-Heitler

(2) References
@verbg, Mork, and Olsen (1968).

(3) Notes

a. This formula is evaluated in the energy region 2<k<7 by
@verbg, Mork, and Olsen (1968) in Figs. 6.04, 6.05, 6.06, 6.07

Formula 3D-1000. These results show that the asymmetries in
the energy distributions persist even up to values of £=6.50.

b. More data are needed in order to determine the effect of
atomic screening on the cross sections predicted by Formula
3D-1006 in the threshold energy region.

Formula 3D-1007

[The Davies—-Bethe-Maximon Formula: Unscreened Point Nucleus for Extreme-Relativistic Energies]

do 4aZr
dE, B

(E2+E2+2E.E.) (ln

IEE. 1
@),

where f(Z) = Coulomb correction function, which is discussed by Davies, Bethe, and Maximon (1954) and eval-

uated in Table 6.05.

(1) Conditions of Validity
Table 6.01: B, D, E, F.

(2) References
Davies, Bethe, and Maximon (1954), Formula (35).

Formula 3D-1009

[The Davies-Bethe-Maximon Formula: Screened Point Nucleus for Extreme-Relativistic Energies]

do

-_ = aZ2702k_3[ (E+2+ E_z) ‘I’1+ %E+E_.‘I’2] y

dE,
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where
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V=% (v)—%In Z—4/(2),
‘I’2= ‘132(')') —%‘ In Z—4f(Z),

where for Thomas-Fermi screening, ®;(v) and ®,(7y) are given in Formula 3D-1003 and in Fig. 6.09 with v equal
to 100%/ (E+E_Z'?), and the Coulomb correction function f(Z) is given in Table 6.05.
For an arbitrary form factor F(q) (Thomas—Fermi or Hartree-Fock), ¥; and ¥, may be written in the following

form (Olsen and Maximon, 1959):

1
V=644 j T(5) di,
0

1
Ty=6+24 f F1—£)T(E) d&,
0

where

T(9) =In (1/5)—2—f(2)+5(/9),
N [ (e T 0/O?
s(g)—[m{[l PO T-1) 4

with F(g) =atomic form factor defined in Sec. IT, and

o=Fk/2E,E_,
£= (14u)7,

¢

u= P+0+.

A. For complete screening where y<<1 with the Thomas-Fermi form factor,

F(8/£) =In (111v/200¢),
Then, Formula 3D-1009 can be written as

I'=In (111Z-1/£) —2—f(Z).

do/dE,= (40Z¢/®) { (E+E2+3E,E_)[In (183Z271%) —f(Z) I+3E.E_}.

B. For intermediate screening where v 21, the function —(§/£) is evaluated in the following table (Olsen and

Maximon, 1959):

6213/1215 0.5 1.0 2.0 4.0 8.0 15.0 20.0
—5(8/%) 0.0145 0.0490 0.140 0.331 0.676 1.13 1.37
6213/1215 25.0 30.0  40.0  50.0  60.0 80.0 100.0  120.0
—F(5/£) 1.56 1.73 2,00  2.22 2.39 2.68 2.90 3.08

The screening functions ®;(y) and ®,(y) are evaluated with the Thomas-Fermi form factor in Fig. 6.09.

C. For:intermediate screening where 2<y< 15 with the Thomas-Fermi form factor, Formula 3D-1009 can be

written as
do 4P
dE, B

(E2+E2+2E.E.) [ln

EE. 1
L i@,

where ¢(y) is evaluated from the curve in Fig. 6.10 and is discussed by Bethe (1934).

(1) Conditions of Validity
Table 6.01: D, E, F.

(2) References
Davies, Bethe, and Maximon (1954), Formulas (43) and (42).

(3) Notes

a. A comparison of Formula 3D-1009-A with Formula 3D-
1003-B shows that the Coulomb correction can be applied to

the Born approximation formula for do/dE; by the addition of
the term

— (4aZ?r /1) (E2+E2+3ELE)f(2),

as shown by Davies, Bethe, and Maximon (1954), and Olsen
(1955).

b. The differential pair cross section predicted by Formula
3D-1009 for aluminum (solid line) and lead (dashed line) is
given as a function of the positron energy E, in Fig. 6.11 for
k=1000.
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Formula 3D-1010

[The Jost-Luttinger—Slotnick Formula: Unscreened Point Nucleus]
Lil‘; _ OtZ2fo2
dQ, 64tk

2[/37 14 11 4 2 73 14 29 10
_ - e e — 2 — — —_— —_— — — —_— 2 —_ —_
h n[(9 9")E (9+3n2)K]+2n3[( 9+9">E+(9+3n2)K]’

L= (1—F/47) (4/7) K3,

{I+1p},

where

with
n=%(k cos¥,),
d
K1= '—E K,
1 £

and K and E are the complete elliptic integrals of the first and second kind, respectively (Abramowitz and Stegun,
1964, p. 589), of argument (1—1/7?)12 with 5 replaced by £ in the integral for K;.

(1) Conditions of Validity (3) Notes
Table 6.01: A, B, E. a. The angular, distribution of the recoil nucleus predicted
by Formula 3D-1010 is given by Jost, Luttinger, and Slotnick
(2) References (1950, Fig. 4) for selected photon energies of 4.08, 6.12, 10.2,
Jost, Luttinger, and Slotnick (1950), Formulas (49), (51), and 16.3 MeV.
(52), and (53).

Formula 3D-1020

[The Borsellino Formula: Unscreened Point Nucleus]

do FpP,
— =16aZ2r —2
ap, T
where
Pp=|py+p-|,
w2 w w2 P,
= — — R _ 4
F [F1+ %2 (F1 A)]sech P (F2+ 682 Fa) P

=F;ln (2k/W)—F, for W<k,
Fi=(2+1/2W2—1/16W*) L— (14+1/4W?) A,
Fy=%(16+21/4W2—17/32W*) L— 15 (28+17/4W?) A,
F3=3(4—1/16W*) L—1(241/4W?) A,
W= (k2—P2)",
A= (1-1/W?)12,
L=cosh W.

A. The cross-section differential with respect to W, which is functionally related to P, and is equal to the energy
of the electron—positron pair in the center-of-momentum system, of the pair p,+p_=0"is given by Borsellino
[1953, Eq. (7)] as

do/dW =16aZ@F /W*
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(1) Conditions of Validity (3) Notes

Table 6.01: A, B, E. ) a. Examples of the distributions of the pair momentum P,
@) Ref and the energy W predicted by the above formulas for selected
eferences

photon energies are given by Borsellino (1953, Figs. 1 and 2).
Borsellino (1953), Formulas (4) through (9) as corrected by
Hart et al. (1959, footnote 15).

Formula 3D-1032

[The Jost-Luttinger—Slotnick Formula: Screened Point Nucleus]

do  aZ¥@[1—F(q) P
5= 0[ ”q]I(q,k),
dg 8k

where

)L -1+ (345 + L) o- 11

I(g, k)= (1—3¢) )1+ (1—q qu—l— 3

[ 1(4+q2)+%k2(—4+ %)] (1+4/¢)7" In [(1+4/ g =)/ y)m] ;

(1+4/¢) 1+ (1—1/y)1
with

y=1(2gk—¢), [k—(B—4)*]<q<[k+ (F—4)'"],

Ji=Ly(—x1) + Lo(— ) + 372+ 3 (In N) 245 (In 2)2— (In 2) (In 2¢%),

where Ly(x) designates Eulet’s dilogarithm or the Spence function (Grobner and Hofreiter, 1961, p. 71, Part 2;
and Motz, Olsen, and Koch, 1964, Table XIII), and

= (Z)\) _1; Xo= }\/Z,
=3o (@+0)F,

s=[(y— 1) 51T
(a) For ¢k or yxiqk/2,

I(g, By~ (1—3¢*)Ji+3[1—4y— (2/3y) I In 2432 (1— 1/9) "] {1142 (1—1/9) — 2[1— (1/9) I*}.
If in addition ¢<1,
[1—(g?/2) Vir—2L:(1/2) — (In 5) (In 4y) +%72+3(In 2)%

(b) For £>1 and gk~22, Suh and Bethe [1959, Formula (6)] have shown that I(g, ) in the above cross-section
formula can be expressed as

Can s 2 __2_1/22 ES__ 2\ £~1—ln(2kq) 4 [1+(1_2/kq)1lz]
I(q,k)—327rk2qz{3(1 kq) (6+6kq (kq)z) (kq i +3(kq)3)ln e

R

(c) For k, gk>>1 and <&k, Suh and Bethe [1959, Formula (12)] have shown that I(g, k) in the above cross-
section formula can be expressed as

I B)= 16mk2g8 {1+ (26—1)

3 ar(g o)1k In [1+g+£112(5+2)1/z]}

where
&= (m:/mo) Tz.
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(d) For pair production in the field of a nucleus where m,>>1 and £=¢?/2, Bethe (1934) has shown that

I(o ) = 64m3k%@ In [p2+ (p+1)¥2] 1 1 In [p24 (p+1)12]
(g, k)= 3 P2 (pt 1)1 ¢ - p2(p1)12
where p=g¢%/4.
(1) Conditions of Validity b. The relative dependence of ds/dg on ¢ is given by Bethe
Table 6.01: A. E. (1934, Formulas 65, 66, and 69) as
(2) References (do/dg) = (a/9) [(g—qmta) /g*  for g=gum
Jost, Luttinger, and Slotnick (1950), Formulas (39) and (43)
as corrected by Borsellino (1953, Footnote). - =@/U-FOF for gmmKe<K1
(3) Notes =(¢/¢® (In ¢g+d) for ¢>>1,

a. Examples of the momentum distribution predicted by For-
mula 3D-1032 are given by Jost, Luttinger, and Slotnick (1950,
Fig. 3).

where a, b, ¢, and d are constants and ¢min is the minimum mo-
mentum transfer.

Formula 3D-1229
[Exact Polarization Formula with Dependence on (P, {;): Screened Point Nucleus for

Extreme-Relativistic Energies]

di o
_d}; (P., ;) =CLFO+ P, F%+],
+

where (, 7%, and F*+ are given in Part B of Table 6.08, and P,, and ¢, are defined in Sec. II.

(1) Conditions of Validity (2) References
Table 6.01: D, E. Olsen and Maximon (1959), Formula (10.8).

Formula 3D-2000

[The Sauter-Gluckstern-Hull Formula: Unscreened Point Nucleus]

Po o e {_4sin29+(2E+2+1) (SES—2EEA3) | (p2=F) | 2B
dEd, " 4k p4?D* p4°Dy? D’D,? 2Dy
L L [2E+ sint 0, (3k-+ ') | B(EA—EB—1) | 2E+2(E+2+E_2)—(7E+2+3E_E++E_2)+1]
-+ p42D* P4’ Dy p4?Dy?
T E N T S
p-D/LD,* D, DD, p-Dy)’
where

D=|py—k |= (ps>+—2p;k cos 0,) ",
pon (B | (ot

E\E_+1—pyp- E_—p-
D+p_
e£=In ('lsj__%) y D+= E+— P+ Ccos 6+.
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(1) Conditions of Validity
Table 6.01: A, B, E.

(2) References

Gluckstern and Hull (1953), Formula 17.1.
Sauter (1934), Formula 11.

(3) Notes

a. The cross sections predicted by Formula 3D-2000 are given
in Fig. 6.12 for various values of %, 6,, and E,."

b. Formula 3D-2000 is a factor of 2 larger than Formula
(17.1) given by Gluckstern and Hull (1953). This factor was
erroneously omitted in Formula (17.1) in the process of averag-
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ing and summing over the initial and final polarization states
of the particles.

c. Olsen [1963, Formula (A2)] has shown that for high
energies and for equipartition of energy (E,=E_=Fk/2), the
average value of 6, can be calculated in terms of #=E,§, from
the equation

(y 57 In (8/2) = (2/5) ( 12
ST m )~/ \ Sk)

d. For large angles and high energies, Hough [1948, Formula
(2) ] has given a simplified formula for this cross section. Calcu-
lations based on the Hough Formula have been made for various
cases by Miller (1954) in order to predict the energy and angular
distribution of pair electrons produced by a bremsstrahlung
photon beam.

Formula 3D-2003

[The Schiff Formula: Screened Point Nucleus for Extreme-Relativistic Energies]

o

dE+dQ+ B ™ k:’

where #=E 0, and

B 2aZ%2E_+2{ (E,—E_)® 1612E,E_

(E*+E?) | 4w’ELE_ }
(u?41)2 (u2+1)* [ (2+1)? (u2+1)4] In M (u)
1 B\ 7\
M) (2E+E-) + (111(u2+1)) :
(3) Notes

(1) Conditions of Validity
Table 6.01: A, D, E, F, H.

(2) References
Schiff (1951), Formula 1.

a. Formula 3D-2003 is obtained from the inverse bremsstrah-
lung cross-section formula after the proper substitutions as given
in Formula 3D-1003-A.

Formula 3D-2007

[The Olsen-Maximon Formula: Unscreened Point Nucleus for Extreme-Relativistic Energies]

d’o / dE+dQ+ = [d2 g, / dE+dQ+:|20097

where

[d%’/ dE.l.qu.]goog =formula 3D—2009,

with

5:(6/5) =0,

and

I'=In (1/8) —2—£(Z2).

(1) Conditions of Validity
Table 6.01: B, D, E, F.

(2) References
Olsen and Maximon (1959), Formula (10.4) with F(8/£) =0.
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Formula 3D-2009
[The Olsen~Maximon Formula: Screened Point Nucleus for Extreme-Relativistic Energies]

@0 /AELdQ = (2022r@E 28/7k}) [ (E2+E_2) (3+2T) +2E_E, (1+44%°T) ],
where £, T, and # are defined in Formula 3D-1009.

(1) Conditions of Validity (3) Notes
Table 6.01: D, E, F. a. The cross sections predicted by Formula 3D-2009 for Z =82
are shown by the dashed lines in Fig. 6.12 for photon energies
(2) References of % equal to 1000 and 100.

Olsen and Maximon (1959), Formula (10.4).

Formula 3D-2011

[The Olsen Formula: Unscreened Point Nucleus for Extreme-Relativistic Energies]

Po  daZd ( 2E,E. E, E, E. E- E+2+E_2)( w? )
= s P g P e L il (5 0 R RT3 ) S A
dE dw B (1+w2)2{2 % PR 2% FH B A E-

w (BB (E,—E) E-. EXME? \  y [ B B\
8B wz)z( - T 1) e <E+2+E.2>(1+w2>+4(——k )]}

where
w= (E.E_/k)9, dw= (E,E_/k)dQ/0d®,

6=opening angle between electron and positron as defined in Sec. II,
dQ=0d9d®,

and v is given by the equation
cosh (v/2) =k[4E,E_/(1+w?) T2

(1) Conditions of Validity (3) Notes
Table 6.01: A, B, D, E, F. a. Integration of this formula over w with E, fixed gives
Formula 3D-1001. Similarly, integration over E, with v fixed
2 R gives the high-energy, small-angle approximation of the Borsellino
(2) References Formula 3D-1020, do/dW, as shown by Olsen (1963). For high
Olsen (1963), Formula (7). energies and small angles, W=v/2.

Formula 3D-2013

[The Olsen Formula: Screened Point Nucleus for Extreme-Relativistic Energies]

Po  AaZw@ w ( E. E, E. E. E+2+E_2)[ w? ]
= e M e M s Lt | DN R . A
dEjdw B (1+w2)2{2 R TR R 2% HT BB B e

w [EE_(E,—E) E. E’E? T v [ (E+E_ J
(1+w2)2 [ ks ln E+ zkz 1] sinh v (E+2+E—2) (1+'w2) +4 k ) ]} )

+8E.E_
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where
w= (E,E_/k)6,

OcCTOBER 1969 « PArT I

dw= (E,E_/k)dQ/0d®,

0= opening angle between electron and positron as defined in Sec. II,

dQ=049d%,

v is given by the equation

cosh (v/2) =k[4E,E_/(1+w?) ],

p=In (2E.E_/k)+5(5/5),

where the screening function, $(6/¢) [with §=%/2E,E_ and in this case { = (14-%?)~1] is defined and evaluated in
Formula 3D-2009 including Parts (a) and (b) for the cases of complete and partial screening.

and

A. For the case where the electron and positron share equal energy (equipartition of energy) such that E, =

E_=Fk/2, the formula becomes
do 4ol w
dE,dw B

(1) Conditions of Validity

Table 6.01: A, D, E, F.

(2) References

Olsen (1963), Formulas (21) and (22).

(3) Notes

a. Theoretical distributions predicted by Formula 3D-2013(a)
show good agreement (Olsen, 1963) with available experimental
results for photon energies of 6, 50, and 100 MeV.

b. The mean opening angle between the electron and positron

REPEE {(“““ 2 [“ (1%)"] - B + (1113;)2] = oy O+ } '

for equipartition of energy is given in terms of w as
157 In k—41/30 24
wy=— = (1= 2,
32 In (/2)—%
for no screening with a large-angle correction, and as
15+ In (88821%8) —3/5
32 In (182Z-113)—1/24
for complete screening. The most probable value of % for a meas-
ured opening angle 6 is given as
k=3.2/6.
Experimental data and multiple scattering corrections pertaining
to these results are also discussed by Olsen (1963). For further

experimental applications, see the works of Khubeis ef al. (1964);
Bertin et al. (1966) ; Castor ef al. (1966) ; and Avgerat et al. (1966).

(w)=

Formula 3D-2132

. . [Born Polarization Formula with Dependence on (Py, €): Screened Point Nucleus]

(Po/dE1dQ) (Pr, €) =2C[FO+ P Fe(1—2(i1-€)?) ],
where C, F°, and F¢ are given in Part A of Table 6.09, 1 is given in Part A of Table 6.10, and Py, and e are defined

in Sec. IL.

(1) Conditions of Validity
Table 6.01: A, E.

(2) References
May (1951) and Gluckstern and Hull (1953) for Fe.

(3) Notes

a. Exponential screening is assumed in the above results, such
that V(r) = — (aZ/r) exp — (r/B) with B=111Z718, The case of
no screening is obtained by choosing g~1=0.

b. For the case of no screening (81=0 in Table 6.09) and
for the special cases where (1-€)=1 and (ii-e) =0, Formula

3D-2132 is given by dor1 [Eq. (17.2)] and do111 [Eq. (17.3)],
respectively, in Gluckstern and Hull (1953). It should be noted
that the latter Eq. (17.3) contains a misprint in which the
addition sign (+) before the expression in the curly bracket
should be replaced by a multiplication sign (X). For these
cases, it follows that Formula 3D-2000 which is averaged over
the initial photon polarization states, is equal to 3 (do11+dory)

c. The dependence of the cross-section ratio for linearly polar-
rized photons in a plane perpendicular ({i-€=0) and parallel
(ﬁ-e=1) to the emission plane (k, P+) on the positron energy
is given in Fig. 6.13 for values of % equal to 10 and 50, and for
different values of %0,. The cross sections were evaluated for the
case of no screening from Egs. (17.2) and (17.3) in Gluckstern
and Hull (1953).
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Formula 3D-2139

[Exact Polarization Formula with Dependence on (Py, €): Screened Point Nucleus for
Extreme-Relativistic Energies]

(&0 /dE4dQ;) (PL, €) = Formula 3D-2132, with C, F°, and F, given in Part B of Table 6.09.

(1) Conditions of Validity _(2) References
Table 6.01: D, E, F. Olsen and Maximon (1959), Formula (4.10); Olsen (1968).

Formula 3D-2242

[Born Polarization Formulas with Dependence on (P., {), (P, &4!1), and (P, ¢4t):
Screened Point Nucleus]

(Po/dEdQy) (P, {) =CLF+ (Po-k) (Fsot.2,) ],

where )
Foot= Flp, 4 Freaq;
s P+=p+/I P+ 1, i=u/u;
C, I, Ft\l and F:+ are given in Part A of Table 6.09; and Py, k, ¢4, py, and u are defined in Sec. IL.
B.
(Po/dE1d%) (Pe, §41) = CLR+ (Po-K) (L4+py) F11],

where €, F°, and F¥+!l are given in Part A of Table 6.09; P,, k, and ¢, are defined in Sec. IT; and {y!l={y Dy
with p;. given in A above.

C.
(d0/dEdQy) (Po, §44) = CLF+ (Po-k) (L4 -tFt],
where C, I, and Ft.x are given in Part A of Table 6.09; P,, k, ¢;, and u are defined in Sec. IT; and {y+= ¢, 1.

(1) Conditions of Validity Bobel (1957) and Fronsdal and Uberall (1958) for Ft:ll
FeL .~
Table 6.01: A, E. and Fo=.
(2) References (3) Notes
McVoy (1957) for Fell, As in Formula 3D-2132.

Formula 3D-2249

[Exact Polarization Formulas with Dependence on (P., {+), (P., &4!1), and (P, {4+):
Screened Point Nucleus for Extreme-Relativistic Energies]

A.
(d%/dE dQ,) (P, ;) =Formula 3D-2242-A,
with C, F°, F%.') and F¥++ given in Part B of Table 6.09.
B.
(&0 /dE4d2,) (P, ¢+1) = Formula 3D-2242-B,
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with C, F?, and %!l given in Part B of Table 6.09.
C.

ParT I

(&0 /dE.d) (P,, ¢4+) =Formula 3D-2242-C,

with C, F°, and F*++ given in Part B of Table 6.09.

(1) Conditions of Validity
Table 6.01: D, E, F.

(2) References

Olsen and Maximon (1959), Formula (4.10).
Olsen (1968).

Formula 3D-3000

[The Bethe-Heitler Formula: Unscreened Point Nucleus]

d’c

p_ sin 0_

2 » 2 qa1n2 0
e == () B [P e+ (4E2—¢)
2p4p—sin b4 sin 6_ cos (Dy—P_) o o on2 (p42sin? 0, +p_2 sin%6..) ]
+ D_D, (4, B¢ —20) — 2% (E——p_cosb_) (Ey—py cosby)

where ¢? is defined by Eq. (3.03) in Sec. III, and D = E.—p4 cos 0.

(1) Conditions of Validity
Table 6.01: A, B, E.
(2) References

Heitler (1954), Formula (6), p. 257.

(3) Notes

a. This formula is symmetrical as between the positron and
the electron, as a consequence of the Born approximation which

is proportional to the square of the charge. However, the sym-
metry is destroyed by higher-order calculations, as shown for
example by the results of Nishina, Tomonaga, and Sakata (1934),
and by the more accurate results of @verbg, Mork, and Olsen
(see Formula 3D-1006).

b. The azimuthal angle ®, given by Heitler (1954) above, is
equal to the difference of the azimuthal angles &, and &_ defined
in Sec. IL.

c. The dependence of the cross section predicted by Formula
3D-3000 on the positron energy is evaluated for the geometries
shown in Fig. 6.14, and is shown in Fig. 6.15(a), (b), (c), and
(d) for photon energies of £=10 and 3.

Formula 3D-3001

[The Bethe-Heitler Formula: Screened Point Nucleus]

Po/dEdQdQ_=[dPo/dE1dQdQ_ T 1—F () T,

where

[/ dE+d9,d9_TJsme= Formula 3D-3000

and F(q) is explicitly defined in Formula 3D-1003.

A. For high energies (&, E., E..>>1) and small angles [0, = 0(1 /E.),0_=0(1/E_)], Olsen and Maximon (1959)
have shown that this formula is given by the following expression [see Olsen (1963), Formula (1) ]:

o/ dE,dQd0_= (20Z*r2E,*

2/ k) (Bl +E2) g+ 2B, E_(§—n)*[1-F(9) I,
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where
¢= (1+“2)-1: n= (1+1)2)—1,
u= E+0+, 7)=E_.0_,
q=k—p;—p,
q1=—u—v=component of q perpendicular to k.
(1) Conditions of Validity (2) References
Table 6.01: A, E. Heitler (1954), Formula (6), p. 257, multiplied by the screen-

ing factor [1—F(q) J»

Formula 3D-3004

[The Bjorken~Drell-Frautschi Formula: Finite Nucleus for Extreme-Relativistic Energies]

do =__aZ2r02E.,E_ 25k2 [1_ [ Me ]‘1
Ednde. @ay Be G Gan L TP B
72
e el
where

S1= (b py) >+ (b p-) @ (Ps-P-),
Sa=(@/R)[(P+*R)*+ (P-+R)*],
R=four vector with components {p,, T,} for nucleus initially at rest,
k, Py, P—, § are four-component vectors defined in Sec. II, such that
kepr=K-pi—kEy,
DyP-=P4 P-—ELE_,
F=g—q,
Q=k—E,—E._,
and Gg and Gy are the nuclear form factors defined in Sec. II.

A. For small angles such that 6,1, recoil effects are negligible and Formula 3D-3004 can be written as

0 /dEd0dQ_=[do/dE1d2 dQ JonGr2(]),
where
[P/ dE +dQ4dQ_Jswe= Formula 3D-3000.

B. For the special case of symmetric pairs with E, =E_ and 6, =6_, this small-angle formula can be written as

Fo  4aZn} G
dELdQdQ_  w*  F9S

C. For nearly symmetric pairs such that E,—E_<KEy, 6,—0_<K04, and g.=|u+v |1 (withu and v equal to
the perpendicular components of p; and p_, respectively), the small-angle formula becomes

dc _ alr¢ Gg
dE dQdQ. 1w EOP

D. In the above formulas, 7, has been neglected compared to &, E4, and m,. When i, is not neglected, the cross

(g*+E,%,%).
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section may be written in the form

Fo  aZripip. W

mrp-—z/ Mo

OCTOBER 1969 + ParT I

dELddQ- (21)* B¢ (py-k) (p_-k) Ep—-prtEr

with

S1= (P k) >+ (P k) *+ P (P P-) — [2ﬁ+'ﬁ—+ (1—-33 (

Se= (/R [ (P4 B)*+ -+ B)*IH[ (B4+k) (p—-F) T

LGE*(Si+S2) —[(Ga/Z) 53 (mo/m,) P(S1—S2) ],

Pyk ?7—"5)]
5k k)]

X{2(Bsp-) (Brk) (k) + (2/R)[(Ps-k) (B R) — (P—-) (P R) P+L (1K) *+ (p-F)*T}

(1) Conditions of Validity
Table 6.01: A, B, D, G.

(2) References

Bjorken et al. (1958): The Bjorken—Drell-Frautschi Formula
3D-3004 is obtained from the more convenient form given in
Blumenthal et al. (1966).

Olsen (1968), Formulas (10.16), (10.17), and (10.18) on p. 175
for small-angle approximation.

Drell (1952), Berg and Lindner (1958), and Sarkar (1964)
for the formula in Part D above. This formula in the form given
was obtained by S. Waldenstrom (unpublished).

(3) Notes

a. The formula in Part D reduces to the Bjorken-Drell-
Frautschi Formula 3D-3004 for 6,>>1/% and m¢<m,, k, E,, and
to the Bethe-Heitler Formula 3D-3000 for ¢2<<km,/mo.

b. Some experimental tests of Formula 3D-3004 are given in
Blumenthal ef al. (1966), Ashbury et al. (1967) and Eisenhandler
et al. (1967).

c. Second-Born corrections and hard-photon radiative correc-
tions to wide-angle, high-energy pair production are given in
Brodsky and Gillespie (1968), and Huld (1967), respectively.

Formula 3D-3007

[The Bethe~Maximon Formula: Unscreened Point Nucleus for Extreme-Relativistic Energies]

#o 224 EZE?
dE.dQ,dQ_  (sinhwaZ)? &

{T*V(0) [ (w+0") n— 2B, E_ (w8 "?) + 2(E >+ E_2) ugy cos &]

+a’Z2W? () @[ B (1 — (w2 4-0%) én) — 2E, E_ (w8 +0"n%) — 2(B*+ E_#) uvgy cos @]},

where
u=p,04,

£=1/(1+4),

x= 1—'92577,

v=p_0_,

n= 1/(1"‘02):

and V and W are hypergeometric functions (Abramowitz and Stegun, 1964, p. 556), such that

V(x) =F(—iaZ,iaZ;1; %),

W (x) = (aZ)~2(dV/dx).

The functions ¥ and W have been evaluated by Olsen and Maximon (1964, Fig. 3) for copper and lead.

(1) Conditions of Validity
Table 6.01: B, D, E, F.

(2) References
Bethe and Maximon (1954), Formula (7.14).
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Formula 3D-3009
[The Bethe~-Maximon Formula: Screened Point Nucleus for Extreme-Relativistic Energies]
&'s/dEd2dQ=[do/dE,dQ4dQ Tl 1—F(g) T,

where
[d®¢/AE,dQ,dQ_Tssr= Formula 3D-3007.

(1) Conditions of Validity (2) References

Table 6.01: D, E, F. Bethe and Maximon (1954), Formula (7.14).
Davies, Bethe, and Maximon (1954), p. 790 and Formula (27).

Formula 3D-3119

[Exact Polarization Formula with Dependence on ¢, : Screened Point Nucleus for
Extreme-Relativistic Energies]

(@0/dB4d24d2.) (8) = 2C[F+F+-2,],
where C, F? and F’+ are given in Part B of Table 6.10, and ; is defined in Sec. II.

(1) Conditions of Validity (2) References

Table 6.01: D, E, F. Olsen and Maximon (1959), Formula (4.10).
Olsen (1968).

Formula 3D-3132

[Born Polarization Formula with Dependence on (Py, e): Screened Point Nucleus]

(P0/dEdQdQ_) (Pr, €) =4C[F*+ P F<],
where C, F% and F¢ are given in Part A of Table 6.10, and Py, is defined in Sec. II.

(1) Conditions of Validity (2) References

Table 6.01: A, E. May (1951), Gluckstern ef al. (1951), Gluckstern and Hull
(195?), Bobel (1957), Claesson (1957), McVoy (1957), Fronsdal
and Uberall (1958), and Banerjee (1958).

Formula 3D-3139

[Exact Polarization Formula with Dependence on (P, €): Screened Point Nucleus for
Extreme-Relativistic Energies]

(Po/dEd2dQ_) (PL, ) =4C[F°*+ PLF<],
where C, F?, and F? are given in Part B of Table 6.10, and Py, is defined in Sec. II.



622 ReviEws oF MoODERN PHyYsrcs * OCTOBER 1969 - Parrt I

(1) Conditions of Validity (3) Notes
Table 6.01: D, E, F, a. Experimental agreement with the theoretical results pre-
dicted by Maximon and Olsen (1962) is obtained by Barbiellini
(2) References et al. (1967).

As in Formula 3D-3119, Maximon and Olsen (1962), for
coplanar case.

Formula 3D-3149

[Exact Polarization Formula with Dependence on P.: Screened Point Nucleus for
Extreme-Relativistic Energies]

(dc/dEd,dQ) (P,) =4C[F*+P,-F¢ ],
where C, F° and F¢ are given in Part B of Table 6.10, and P, is defined in Sec. II.

(1) Conditions of Validity (2) References
Table 6.01: D, E, F. As in Formula 3D-3119.

Formula 3D-3229

[Exact Polarization Formula with Dependence on (P, €, {;): Screened Point Nucleus for
Extreme-Relativistic Energies]

(dso'/dE+dﬂ+dQ—) (PL7 €, {+) = ZCI:FO_}_FI"' ° (++PLFQ‘+"' c+];

where C, F9, F%+, and F¥+° are given in Part B of Table 6.10, and Py, is defined in Sec. II.

(1) Conditions of Validity (2) References
Table 6.01: D, E, F. As in Formula 3D-3119.

Formula 3D-3249

[Exact Polarization Formula with Dependence on (P., {;): Screened Point Nucleus for
Extreme-Relativistic Energies]

(d%0/dEd2dQ-) (Pe, {4) =2C[F+ P Fé4-Fu L+ Pe(F ¥ 44) ],
where C, F9, F¢, Ft4, and Ff+f are given in Part B of Table 6.10, and P,, §, and ¢, are defined in Sec. II.

(1) Conditions of Validity (2) References
Table 6.01: D, E, F. As in Formula 3D-3119.



TaBLE 6.04. Total pair cross sections evaluated by Maximon
(1968) from the Racah Formula 3D-0000.
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TABLE 6.05. Evaluation of the Coulomb
correction function, f(Z).»

623

Photon energy z f(2)
(MeV) /o
6.40X107%
1.03 9.79X10™7 1.02X10-3
1.05 3.99X10-8 6 2.30X1073
1.10 7.61X 104 13 1.07X107
20 2.52X1072
1.15 2.98X1073
26 4.20X107
1.20 7.13X1073 29 5.19X1072
1.25 1.34X102 32 6.27X10™
1.30 2.19X10? 36 7.84X1072
1.40 4.51X10? «Q 1.05x107
1.50 7.58X 10~ 47 1.29x10™
1.75 1.78X107 %0 Ladx10
56 1.76X10™
2.00 3.03X107 73 2.76% 10~
2.50 5.84X1071 78 3.07X 101
3.00 8.72X1071 82 3.32X1071
4.00 1.42 92 3.95X1071
5.00 1.90 2 As shown by Egs. (36) and (38) in Davies, Bethe, and Maximon
(1954), f(Z) = (@Z)¥{1+(2Z)2}1+40.202 —0.0369 (Z)24-0.0083 (@Z)4 —
6.00 2.33 0.002 (Z)¢].
8.00 3.05
TaBLE 6.06. Total pair cross sections evaluated by Sgrenssen
10.0 3.65 (1965) from Formula 3D-0009 with the Thomas-Fermi-Moliére
15.0 4.78 screening approximation for Z=82.
20.0 5.62 Photon energy
30.0 6.83 (MeV) o/aZ’re
40.0 7.70 10.0 2.67
50.0 8.38 12.6 3.25
60.0 8.94 15.9 3.83
0.0 9.82 20.0 4.41
100. 10.5 25.1 4.98
31.6 5.54
150. 11.8 39.8 6.07
200. 12.7 50.1 6.58
300. 13.9 63.1 7.05
79.4 7.49
400. 14.8 100 7.89
500. 15.5 126 8.25
200 8.86
600. 16.1 316 0.33
800. 17.0 631 9.82
1 000. 17.7 1.00X% 108 10.0
10 000, 24.8 3.98X108 10.4
1.00X10¢ 10.5
100 000. 32.0 1.003X 105 10.5
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TABLE 6.07. Evaluation of the scaling function
S(Z, Zy)® for Zy=282.

Z S(Z,Zy)
1 —5.60
4 —4.16
6 —3.74
13 —2.91
20 —2.42
26 -2.09
29 —-1.95
32 —-1.81
36 —1.64
42 —1.40
47 —-1.21
50 —1.20
56 —0.880
73 —0.295
78 —0.130
82 0
92 +0.316

2 As shown in the Notes of Formula 3D-0009, this function is defined
as S(Z, Zo) =(28/27)[In (Z/Z0) +3{ f(Z) —f(Z0) }].

TaABLE 6.08. Polarization coefficients in the formulas for do/dE,.

C=aZ2(1/41%)*
A. Born approximation results: Not available

B. Exact results for extreme-relativistic energies for Formula
3D-1229 (Olsen and Maximon, 1959):

Fo=(E+E )W +3E,E ¥,
Fos=k(By—E_)W+3kE_%,
Foe=F¥ +{4

where ¥; and ¥, are the screening functions given in Formula
3D-1009.

2 This coefficient is the same for Parts A and B,
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] l I I I ]
-
o' 3p-0006  _--" |
— (z=82) -~ =
— -~ =
I ]
| /
4 3D-0000 T
105 — (RACAH) |
wo = =
{\lh — -
N | —
{ - _
b _
6% = =
0% = =
10° | ] 5 | l

1.2 14
PHOTON ENERGY, MeV

Fi16. 6.01. Dependence of the total pair cross section o (divided
by the factor «Z?%,?) on photon energies in the threshold region.
The solid line was evaluated by Maximon (1968) from the Born
approximation calculations of Racah in Formula 3D-0000, and
the dashed line is predicted for Z =82 from the exact calculations
of @verbg, Mork, and Olsen, in Formula 3D-0006. Note that
the photon energy is given in megaelectron-volt units and is
equal to 0.511%.

OO =TT T T T T T T T T T T 1 T 77T

3D-0000
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o/a 7542
I ||ll||l| ] Hlll”l

oal1 HHHI‘ | HHIH‘2 ] l|||lll|3 ] lﬂ!lll‘4 (R

5
o° 10! 10 10

10 10
PHOTON ENERGY, MeV

Fi16. 6.02. Dependence of the total pair cross section o (divided
by the factor aZ?%,?) on photon energy. The solid line was evalu-
ated by Maximon (1968) from the Born approximation calcu-
lations of Racah in Formula 3D-0000, and the dashed line was
evaluated by Sgrenssen (1965, 1966) with Thomas—Fermi~Moliere
screening from the exact calculations of Davies, Bethe, and
Maximon (1954) in Formula 3D-0009. Note that the photon
energy is given in megaelectron-volt units and is equal to 0.511%.



J. W. Motz, H. A. OisEN, aNp H. W. Kocu Pair Production by Photons 625

TABLE 6.09. Polarization coefficients in the formulas for d%/dE d,.

C=(aZr®/27) (p+/k%)*

A. Born approximation results for Formulas 3D-2132 and
3D-2242b:

Fi=—3A:[(2p-/¢) (¢—28%) G+ (2p-g/0) Cur?
+(2p-/d) { (b/¢?) (¢Co¥—bCr) — (1/a) (aCs'—bCs) }
+ (L1/c%2) [—geCei+{3gb—2(E_+D,) ¢} Ci¥]
+ (L1/6¥%) [eCos* —bCuu* ]— (Lo/a¥%) 2(E-~+Dy) Cs
+ (L2/a!'2) Cos*— Cs'Ls]
e=4(2kDs+p-2)
b=26"%(E-+D;)+4D,[kD,— (E+E_+1) ]
¢=(2E;D,+B7%)2—4(D2+67%)
d=(2kD4+B72)2+4872p-2
g=p"*+2(E+Dy—1)
g=111Z-16s
Li=2In[{2D(E+E_+1)+F2E_+p-c/2}d~1/2]
Ly=2In[{#72+(3a"*+p-)*}d 2],  Ls=2In (E_+p-)

Other quantities, such as D, and #, that also appear in coefficients
below are given in Part A of Table 6.10.

Coefficients in Fé:
1) Fo

Ao=1, CO=4E 482, Cu’=1
CP=(2/Dy) (—4E+E_—k*D,*—36™) +67Co
Co=—(2/Dy) (p4*+E-2+kD+572)
Co= (4E_2/D2%) +pCs®,  Cs®= (1/D,2) (1—2kDy)
CP=—(2k*/Dy), CP=—(1/Ds)
(2) Fe
A.=1
Cy#=—2D, (B+[4E*(E+E-+1—FkD,) [u*]}
+B7(Cor*+Coe®) —CP—~[B~4(E-+D) /]
Corr=2{[§(4E,*+g+B7) (E-+Dy) /u?]
—E_—FD, 3} —Ca
Cye=—4k*+-[3a(4E2+67%) /u¥]—C,
Cas®= (3a/u2) — Ca
Ce=[(E-+D,)/u*]—-Cs

Cr=—C" Cu=-1

Ce=0,

(3) Bl

AV=k/p,,  Cll=4E (E,—Dy)—B7,  Cull=—1
Cl'=(2/D4)[—4E,E_—2(E—E.) D4k E, D, ]+67C!
Coll= (2E,/D,) (E4—E_—D,)

Gll= (4E_/D.?) (E_+D,) +8Csll,

Cull=(1/D,?) (1—2E,D;)

Ci=—2E,k/D,, Cs=0
@) P
- Ai=k/w?, Ct=2u+g(p,*+E2—E.D,),

Cut=p2+E2—E.D,
Cit=(2/D,)[4E E_—2D,(2E*E_~E,+E.)
—D,2(2E,2—E,E_+1—kD,) ]+B2Cos*
Cut=—(2/Dy) (+EE_—E_Dy)
Cyt=(1/D,*)[—4E*+4E_D,(E+E_—1)
+2D,2(1—E*+2E,E_) J+67*Cos*
Cyt=(1/D,?) (w*+E,D,—D.,?),
Ci+=(2/Dy) (E4E_-+1—EkD,), Cit=0

B. Exact results for extreme-relativistic energies for Formulas
3D-2139 and 3D-2249 (Olsen and Maximon 1959) :

Fo=2E,[ (E,2+E_?) (3+2I)4+2E,E_(14+4wT) ]
Fo= —16E2E_u?T
Pl =2F, [ (E,2~E_?%) (3--2T") +2kE_(1+4u%T) ]
FS+a=8E, E_kg(1—2£)ul’
where
u=p.0,
§=(1+u?)"t
I=In (2E.E_/k)—2—f(Z)+5 (k/2E,E_£),

as given in Formula 3D-1009

a This coefficient is the same for Parts A and B.

b May (1951) and Gluckstern and Hull (1953) for Fe; McVoy, (1957, 1958) for F¥+!!; and Bobel (1957) and Fronsdal and {berall

(1958) for F.ll and F¥.x.
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TABLE 6.10. Polarization coefficients in the formulas for d¢/dE.dQ.dQ_.

C=4%[aZ?/ (2m)*](p4p-/R3)[1—F (¢) 1/q* B. Exact resultse for extreme-relativistic energies for Formulas
. 3D-3119, 3D-3139, 3D-3229, 3D-3149, and 3D-3249 (Olsen
A. Born approximation results for Formula 3D-3132b: and Maximon, 1959; Olsen, 1968) :
Fo=(k¥/D,D.) (u+v)*+3¢’[ (u/Dy) — (v/D-) I? Fo=32 | JP—EE_| Jo|?
—3[(2E4v/D-)+(2E_u/D,) I Fe=E,E_{| J1 *—| J-e[*—| J-e*|?}
Fe=—3¢{[(4/D}) — (v/D) P2 | [(w/Dy) = (v/D) J-e |2 Fé=—}(EHELIXT]
+3{[(2B,v/D_) +(2E-u/D) Fee=FIRELIX] 1% B2-ELIXT",

Ff o= £3kE, {[iJX]*]L —2Re([iJxJ*]-e¥e) }

~21[QE~/D)+(2E0/Dy) o b} Faf=jb{ (Ey—Ex) | ] [H2Bx | J. [JeFhErRe (% £J1)

Fé ok = Ek((EuDups- (k—6.) — DX (p2XE) ] Fif+t-=—k Re [E_(J)i(J X i—E-(Jo) i(TH)s]
X[ (2E,/D_) — (2E_/D,) —g[(1/D,) — (1/D_) It} Fif+8-e=E,E_(5:;—2kik) {| Jo =] J-e [*—| J-* |2}
FLEDsa- (Pa—Fbs) ~PuX (PrXq) 1D+ 4821 J [{os—Tk) —2 Re (esei®)
X{L(2E4/D-) = (2B-/D3) 1~L(D+/D-) = (D-/D) ] HRE, Re [UJ0)s=Tult U

—J*-e*ei—J*- eei*})+EE_Re ([(J)i—(J2)i]
X{(Ju*) j— T eej—J*-eei*})
where Fifv8-8= — 3 (B4 B2) (30— 2k £ [T XT*]
Dy=E,—p, cosby where
T =KL (2E,E)v/V (1)]

X {(E—n) V (%) +iaZtg (§+1—1) W (2) }
Ji=[2(2E,E_)"2/V (1) ]

£p.(u+v) D+ (D, —DY))

ﬁ=u/u

u=p+~ﬁ(p+-f{) =component of p; perpendicular to k

u=pysinf, X { (ug-+vn) V (%) +iaZing (ug—va) W (2) }
v=p_—&(p—-k) =component of p_ perpendicular to k ) I =Ji+]s A A
o u=p,—k(p+-k)  v=p-—k(p--k)
v=p_.sinf-
u=pi04 v=pf
8:=pu/Es =47, =)
q=k—p.—p- V(1) =[sinh (raZ) ]/ (xaZ)

» This coefficient is the same for Parts A and B. F¢, Ffs, F e, Fyf+8-, Fyf+d—e and F;f+8-¢ are not available in Bom cal-
culations.

bWick (1951); May (1951); Gluckstern et al. (1951); Gluckstern and Hull (1953); Bébel (1957); Claesson (1957); McVoy
(1957) ; Fronsdal and Uberall (1958); and Banerjee (1958).

o These coefficients for the exact calculations are obtained from Eq. (4.10) in Olsen and Maximon (1959). Some errors in the signs
in that equation have been corrected here.

2.0f— —_—
- o8 ]
— . — F1c. 6.03. Dependence of the total pair cross section for the
3 — unscreened point nucleus on the photon energies in the threshold
44 region and on the atomic numbers which are attached to the
29 = various curves. The exact cross section o is obtained from the
calculations of @verbg, Mork, and Olsen (1968), and the Born
cross section og is given by the Racah Formula 3D-0000 which
is evaluated in Table 6.04 and in Figs. 6.01 and 6.02. Note that
the photon energy is given in megaelectron-volt units and is
] equal to 0.511%.
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F1c. 6.04. Dependence of the differential pair cross section Fig. 6.04.
do/dE, on the positron energy E, for an incident photon energy
of 1.07 MeV. The dashed curve gives the Born approximation
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Bethe—Heitler Formula 3D-1000. The solid curves give the exact

cross sections for an unscreened point nucleus derived from the T T
@verbg-Mork—-Olsen Formula 3D-1006 for the various atomic 2.0

numbers attached to each curve.

%) L
i L /(’_——_*\\\\
< B - BETHE-HEITLER
] -
+ 1.Of—
b L
<] % | 2.55 MeV
QQ?'\J -
| /
/
E
5
[¢]
o} 1.0

0.5
(E4-1/(k-2)

Fic. 6.07. Dependence of the differential pair cross section
do/dE, on the positron energy E, for an incident photon energy
of 2.55 MeV. The meaning of the different curves is explained

in Fig. 6.04.
T T T I T T T
B 92 i
i 133 MeV |
82 X T
- 1 2.0/~
1.0~ - L
2 - S8 1 » L
4 = B
< B T e -
@ < N
- 1 s} -
+ A
biw | B " / \ X
44 + |
:": o5l B o /S 3.32 MeV \\ —
[N <+ o -/ \ b
L ° i o/ ]
L/ \ 4
——————— — 8 / ]
L _ = y ¥ \
P BETHE-HEITLER >N~ ] Y]
e ~ | 1] u
g \ 1 i
L/ J !
| ]
00 L L L 55 L L L o 00 1 L 1 1 o ] 1 1 1 -
(E+1)/(k-2) (E,-1) /(k-2)
F1c. 6.05. Dependence of the differential pair cross section F1c. 6.08. Dependence of the differential pair cross section

do/dE, on the positron energy E. for an incident photon energy ~ do/dE4 on the positron energy E, for an incident photon energy
of 1.33 MeV. The meaning of the different curves is explained m  of 3.32 MeV. The meaning of the different curves is explained

Fig. 6.04.

in Fig. 6.04.



628 REVIEWS OF MODERN PHysics + OCTOBER 1969 - Parr I

T 1,,.,1,,,Tlﬂ,lj
a1 —3
3 3
20f —
; : F16. 6.09. Screening factors ®;(y) and ®:(y) for the Bethe-
E E Heitler Formula 3D-1003, where y=100 %/ ( E,E_Z3). The curve
19F— —3 for the “hydrogen atom” was calculated by Wheeler and Lamb
) E E (1939) with exact wave functions. The curves for the Thomas—
- 3 Fermi atom and the bare nucleus differ by the factor 4¢(v),
= 3 where ¢(vy) is evaluated in Fig. 6.10.
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F16. 6.12. Dependence of the differential pair cross section
d?¢ /dE.dQ, on the positron energy E, for incident photon
energies of % equal to 1000, 100, and 5. The cross sections are
calculated for different values of the parameter k6, shown by the
numbers over the curves. The solid lines were calculated with
the unscreened, Born approximation Formula 3D-2000, and the
dashed lines were calculated for Z=82 with the screened, exact

Formula 3D-2009.
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F16. 6.14. Definitions of the geometries for the vectors, k, p;,
and p_, which are used in the evaluation of the differential pair
cross section given by Formula 3D-3000 in Figure 6.15.
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Fic. 6.13. Dependence of the differential pair cross section ratio
(d%/dEdQ,) (-e=0)/(d%/dEdQ,) (H-e=1)

on the positron energy for linearly polarized photons in a plane
perpendicular (i-e=0) and parallel (i-e=1) to the emission
plane (k, p.). The cross sections (d%¢/dE,dQ,) (G-e=0) and
(d%0/dE.dQ,) (i-e=1), were evaluated from Formulas (17.3)
and (17.2), respectively, in Gluckstern and Hull (1953).
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Fie. 6.15. Dependence of the differential pair cross section given by Formula 3D-3000 on the positron energy for photon energies

of & equal to 10 and 3. The cross sections are evaluated for an electron emission angle such that k6_=0.5, 0, 0.5, and 1.0 in parts (a)-

(d), respectively, and for positron emission angles specified in terms of k8, by the numbers on the curves. The geometry for the azi-

muthal angles in (a) is given in Fig. 6.14(a), for (b) in Fig. 6.14(b), for (c) in Fig. 6.14(c), and for (d) in Fig. 6.14(d).
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TaBLE 7.01. Cross-section formulas without polarization dependence for pair production in an electron field

Paijr

Photon energy region

cross section in

electron field 4<k<4.002 4<k<16 k>16 k>100 k>104
7 4B-0000 4B-0001 4B-0002 4B-0003 4B-0004
Votruba Mork Borsellino— Borsellino Bethe-
Ghizetti Heitler
da/dq 4B-1003
Suh-Bethe
d%0/dE dQ.dQ_ 4B-3001 4B-3002
Votruba~ Borsellino
Mork

VII. CROSS-SECTION FORMULAS FOR PAIR
PRODUCTION IN AN ELECTRON FIELD

Electron—positron pair production in the field of an
electron is called triplet production. This process
involves two additional effects which do not occur in
the field of an atom. These are (1) the exchange effects
involving the two electrons and (2) the effects in which
the quantum is absorbed by the target electron (desig-
nated as the y—e interaction in the terminology of
Feynman diagrams). Because of these effects, the
cross-section calculations are complicated and most of
the available results ( Ghizzetti, 1947; Borsellino, 1947;
Votruba, 1948; Rohrlich, 1955; Suh, 1959; Kopylov,
1964; and Mork, 1967) contain various approximations,
as discussed, for example, in the summary by Joseph
and Rohrlich (1958).

Borsellino (1947) calculated the triplet cross section
by neglecting the exchange and y—e interactions. In this
same approximation, Borsellino (1947) and Ghizzetti
(1947) derived a high-energy formula for the triplet
cross section. On the other hand, Votruba (1948)
calculated the differential triplet cross section with the
inclusion of the exchange and y—e interactions. How-
ever, Votruba’s total cross section contains many

approximations and is not reliable except near threshold.
Likewise, Rohrlich and Joseph (1955) obtain a cross
section which is not reliable because it is based on
Votruba’s approximate expressions as shown by Suh
and Bethe (1959).

Mork (1967) has carried out accurate calculations
for the triplet cross section and has verified the accuracy
and limitations of the previous calculations. For example,
for the total triplet cross section, Mork has shown that
(a) the Votruba results (Formula 4B-0000) are valid
near threshold and (b) the Borsellino results (Formula
4B—-0004) are valid at high energies (¥>16) where the
exchange and +y—e¢ interactions are negligible. These
latter effects give a 49, decrease of the cross section at
6.0 MeV, and 6% at 5 MeV. At extremely high photon
energies, the triplet cross section approaches the Bethe—
Heitler cross section such that at 100 MeV, the exact
cross section is approximately 109, lower than the
Bethe-Heitler value.

A summary of the various formulas that are available
for the total and differential triplet cross sections are
given in Table 7.01. These formulas are classified
according to the different energy regions in which their
validity has been confirmed by Mork’s results.

Formula 4B-0000

[The Votruba Formula for Triplet Production Near Threshold]

o=ar(w V3/4X35) (k—4)3.

(1) Conditions of Validity
Threshold photon energies: 4<k<4.002.

(2) References
Votruba (1948).

(3) Notes

a. The validity of Formula 4B-0000 in the threshold energy
region has been verified by the calculations of Mork (1967).

b. Few experimental results are available near the threshold
region (for example, see Frei et al. 1965), and more data are
needed for quantitative comparisons with the Votruba Formula.
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Formula 4B-0001

[The Mork Formula for Triplet Production at Intermediate Energies]

o= (Apg+As+Aps) (1—An),

where Ay is the Mork correction term (Mork, 1967, Fig. 4) which is given in Fig. 7.02. The quantity, (Aza+Ap+
Agg), has been evaluated by Borsellino (1947) and Ghizzetti (1947) for this intermediate energy region, 4<%<16,
and their results are given in Table 7.02.

(1) Conditions of Validity (3) Notes
Intermediate photon energies: 4<k2<16. a. The energy dependence of the cross section predicted by
Formula 4B-0001 for 4<%<16 is shown in Fig. 7.01.
(2) References b. A con}parisox'l of the cross sections pr.edic‘ted t.)y }?:ormula
4B-0001 with various experimental results is given in Fig. 8 of
Mork (1967). Mork (1967).
Formula 4B-0002

[The Borsellino-Ghizzetti Formula for Triplet Production at High Energies]

o= Apg+Ap+Agg,
where Apm and Ag are given in the Borsellino Formula 4B-0003, and for high photon energies (> 16)

1[8 1 1 106 , 49 16.8 0.27
Apa=ar? — | = (In 28)3— (4— = 2 42V n 25—11.8— — — 227,
e =ar’ [3 (In 2%) (4 k) (In 2%) T (168+ Z + kz)ln k p T ]

(1) Conditions of Validity (3) Notes

High photon energies: £>16. a. The energy dependence of the cross section predicted by

Formula 4B-0002 for 2>16 is shown in Fig. 7.01.
(2) References

Borsellino (1947) and Ghizzetti (1947).

Formula 4B-0003

[The Borsellino Formula for Triplet Production at Very High Energies]

o= ABH+ AB,
where
Apa=or?[ 32 In (2k) — %% ]=Bethe-Heitler Formula 4B-0004,
Ap= —ar?k[4(In 2k)3—3(In 2k)2+6.84 In 2k—21.51].
(1) Conditions of Validity (3) Notes
Very high photon energies: &>100. a. Borsellino’s results (1947) contain a misprint in which the
sign in the last term for Ap above is incorrectly given as -421.51
rather than —21.51.
(2) References b. The energy dependence of the cross section predicted by
Formula 4B-0003 for £>100 is shown in Fig. 7.01.
Borsellino (1947). c. Experimental results in this energy region are given in

Sondhu et al. (1962).
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Formula 4B-0004

[The Bethe-Heitler Formula for Triplet Production at Extremely High Energies]

o=ar?[%2 In (2k) — %42

(1) Conditions of Validity (3) Notes

Extremely high photon energies: > 10%. a. The energy dependence of the cross section predicted by
Formula 4B-0004 for £>10¢ is shown in Fig. 7.01.
(2) References

Heitler (1954), Formula (14), p. 260.

Formula 4B-1003
[The Suh—Bethe Recoil Formula for Triplet Production at Very High Energies]

do/dg=ars 3 g/ (T+1) TP {1+ (2T,—1)/¢] In (T++1+9) },
where the momentum transfer q is defined in Sec. II, with ¢? given by Eq. (3.03) in Sec. III.

(1) Conditions of Validity (3) Notes
Very high photon energies: £>100. a. The triplet recoil momentum distributions which are de-
Intermediate ¢ values: ¢k, kg>>1. rived by Mork (1967) are given in Fig. 7.03 for values of % equal

to 1000, 100, 50, and 20. The curves for k equal to 1000 and 100

are given by the Suh~Bethe Formula 4B-1003.
(2) References b. The momentum distributions predicted by Formula 4B-1003
have shown agreement with available experimental results (Hart
et al. 1959; Gates et al. 1962), except in the region of large recoil
momentum where the theoretical values are larger than the
experimental values. Other experimental results are given in
Sondhu et al. (1962).

Suh and Bethe (1959), Formula (16).

Formula 4B-3001

[The Votruba—Mork Formula for Triplet Production in the Laboratory System]

Fo  ard pip- 1
dE+dQ+dQ_. h 4 l Ko | E, 1— (B—'Br/ﬂ—z)

(Xo+Xv+Xw),

where
Xu=U+S1U+S:U+ SsU-SeS1U~+ S551U + S3S5:U 4+ S3.5:5:U;

S1, Sy, and S3 denote the following substitutions
Su ko—k, peopn po—Pu,
Se: Poe>—D4y
Ss: PP,

where, as defined in Sec. II, P is the initial four momentum of the target electron, P, is the four momentum of the
recoiling target electron, and 5, and p_ are the four-momentum vectors of the positron—electron pair. The expres-
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sions for Xv and Xy are identical to Xy with ¥V and W substituted for U, respectively. U, V, and W are given by
U =3 (14711)2{ k5?2 — ks (k17o+ Koos) +T163— To01— 7303+ rara+ Koos— koks+ Ko+ 71+ 263— a0+ 2]
- (koks) o2 (k1 (raF75) —01m9— 0373 )+ ke (0179t 0573— 27301) 0o (T1— 02+ 2K9) — KoKy — T1keF 202 — Ko ]},
V=%(147)"(1—09) Y (xoxs) [ 2 (ko— k3— 273) + ko (k11 01— 09+ 03) + Kk3( — ke— 71+ o+ 02— 03)
+73(— k1— Kot 20— 211) + Ko (01 (02— T2) — 203( x5+ 73) )+ k3 (7172t o1me+ 20373) + 73 (2 (re01+ 0373) — KaTet k201 ) ]}
— the same expression with the substitution p,e2p_,
W =}(1471) (01— 1) Y 2ks [ 21073+ k2 (— ko— 1+ ks— 71+ T3+01) + 273 (03— K1) + Ko+ K1 — 29— K5— T2
—1oF75t- o1t oa—as— 2] (roro) 71{ 2[ 05 (keTs+ kao— Ko (o2t73) + 27078 )+ 73 (ko1 — Ka72) ]
-+ 260 (ks Kot Ty 73— 78— Bo1— oa-0) -t (26— 73F-02) - (2701 — 21— 213)
+ks(r1—03) — 272 (71 ra—Ts— 01— 0ot-08) + 261 — K3 Ko— K2 — 47}
4 (oks) "1{ 2[ o3 (k5ma— KsTs— KaTs— Kooat20973) +T3(01ke— K109) 1Ko (2k1+ 2k3— 01— 08) + k1 (203794 73)
+ ke(ri— 275— 201— 209) + k3 (1 2 (ra— 75— o1— 03+ 05) )+ 209(— ri— Tt T4t 05+ 02— 015)
+ (—2x0— 21+ Ky k3—4d02) } -+ (x0K3) " [4os(ks+73) (ko—73) + 278 (11 To— 73— 01— 02+ 03)
+ko(— 270+ 275— 2x2— 303) + K1 (202 — T2+ 2754 02) - ke (26371 275— 01) + 3 (— 275— 200+ 303)
+ 26— 20+ 33— 304751} .
Here

KO:ﬁO'kﬁ 71=Do* Dry 01=P1*Pry

K1=jir'

Sl

) T2=Po* P, o2=P4 P,
k=p_-k, Ts=Po'Pr, Ts=PrP,

Kg= ]3.{.']{).
Only five of these quantities are independent. The energy—-momentum conservation laws give five relations:

K3= Ko— K1— Kz, T3=ko—1—71—7y,

0'3=Ko+1-0'1‘-0’2, O1= Ko~ Ka—Tg,

O2=Ky— K1—T1.

(1) Conditions of Validity

(2) References
Threshold and intermediate photon energies: 4<k<16. Mork (1965).

Formula 4B-3002

[The Borsellino Formula for Triplet Production in the Laboratory System]

Po ar? pupo 2k 2

= — - S:(1—15 So(1+132 ,
dE,dQ,dQ_ (2m)% kg (D) (P—-F) E—ﬁ—'ﬁr‘i‘E,[ 1(1—1)+ 2( +49)]

where S1 and S; have the same meaning as in Formula 3D-3004, and D and #y, f_, P, k, and § are the four-
component vectors defined in Sec. II of this paper.

(1) Conditions of Validity (2) References
High photon energies: 2> 16, Borsellino (1947).



TaBLE 7.02. The Borsellino—Ghizzetti cross sections® for inter-
mediate photon energies in the region where 4<k<20.

J. W. Morz, H. A. O1sEN,

k a/are® k a/are?
4 0 12.4 0.989
4.4 0.004 12.8 1.049
4.8 0.017 13.2 1.108
5.2 0.038 13.6 1.167
5.6 0.067 14 1.226
6 0.102 14.4 1.285
6.4 0.142 14.8 1.343
6.8 0.186 15.2 1.401
7.2 0.234 15.6 1.458
7.6 0.285 16 1.514
8 0.338 16.4 1.570
8.4 0.393 16.8 1.626
8.8 0.450 17.2 1.681
9.2 0.509 17.6 1.735
9.6 0.568 18 1.789

10 0.627 18.4 1.842
10.4 0.687 18.8 1.895
10.8 0.747 19.2 1.947
11.2 0.808 19.6 1.999
11.6 0.868 20 2.050
12 0.929

® These cross sections were evaluated by Borsellino (1947) and Ghizzetti
(1947). The cross section ¢ in this table is equal to the quantity (ABH-+

AB+ABG) which is given in Formula 4B-0001.
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F16. 7.01. Cross section o for pair production in an electron
field (solid line) and proton field (dashed line). For the electron
field, the cross-section curve is given by Formulas 4B-0001,
4B-0002, and 4B-0003, in the photon energy regions from approx-
imately 2.04 to 8 MeV, 8 to 50 MeV, and 50 to 10* MeV and
above, respectively. For the proton field, the cross-section curve
is given by the Racah Formula 3D-0000. Note that the photon
energy is given in megaelectron-volt units and is equal to 0.511%.
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in the triplet-cross-section Formula 4B—-0001 for the intermediate
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TaBLE 8.01. Selection of pair formulas from Table 6.02(a) for different regions of the incident photon energy.

Pair cross Formulas
section k<6 6<k<30 £>30 Comments
T 3D-0006 Interpolate 3D-0009 Experimental results are listed
between curves in Notes for Formula 3D-0000
given by 3D-0006
and 3D-0009
do/dE, 3D-1006 3D-1000 3D-1009 Accuracy uncertain for
6<k<30
P /dE Q. 3D-2000 3D-2000 3D-2009 Accuracy uncertain for 3D-2000
(0.<1/E,) with Z>10, and for 3D-2009
at large angles (6.>1/Ey)
3 /dE  dQ.dQ_ 3D-3000 3D-3000 3D-3009 Accuracy uncertain for 3D-3000
0.<1/E,), with Z>10, and for 3D-3009
3D-3004 at large angles (0,.>1/E,)
(0:>1/Ey)

VIII. DISCUSSION OF PAIR CROSS-SECTION
FORMULAS

The various cross-section formulas for pair production
by photons are summarized in Tables 6.02(a), 6.02(b),
6.03, and 7.01. In Tables 6.02(a), 6.02(b), and 7.01,
the formulas are classified according to the different
approximations used in the calculations, and the con-
ditions of validity for these approximations are quan-
titatively summarized in Table 6.01. In Table 6.03, the
formulas are classified according to their dependence on
different polarization variables, and the approximations
are identified under the conditions of validity for each
formula.

The fact that different formulas exist for each form
(total or differential) of the pair cross section indicates
that there is no single formula that is valid for every
set of conditions. At best, such a single formula would
not be analytical and would be difficult, if not imprac-
tical, to evaluate. Therefore, it is necessary to select a
formula from the above tables according to the physical
conditions that are imposed in a given experimental
situation. If the conditions of validity are satisfied, the
accuracy of a given formula is expected to be better
than a few percent; otherwise, the accuracy cannot be
specified unless comparisons have been made with
experimental results.

The formulas in Table 6.02(a) apply to the process of
pair production in an atomic field without atomic
excitation (designated as coherent or elastic pair
production). These formulas are classified in two main
categories, according to whether the calculations are
“First Born” or “Exact” as described in Sec. IV. The
subdivisions in each category indicate whether the
calculations contain screening or high-energy approxi-
mations, or nuclear-size effects. Guidelines for the
selection of the pair formulas in Table 6.02(a) are
given in Table 8.01 for different regions of the incident
photon energy and the atomic number of the target.

The most accurate formulas are derived with the
“exact” calculations; however, for particle energies that
are not very large compared to the electron rest energy,
these formulas have a limited application because (a)
they are only available for the total and differential
cross sections o and do/dE,, (b) they are not given in
closed form, and (c) they do not include screening
corrections. As shown in Table 6.02(a), exact calcula-
tions are not available for the differential cross sections
do/dQ,, do/dP,, do/dq, and d?sc/dE.dw, and as pointed
out in Table 8.01, the accuracy of the cross sections
predicted by these formulas is uncertain in the photon
energy regions where the Born condition,

[aZ/(1—4/R) 1K1,

is not satisfied.

The formulas in Table 6.02(b) apply to the process
of pair production in an atomic field with atomic
excitation (designated as incoherent or inelastic pair
production). For this process, only the Wheeler-Lamb
(1939, 1956) calculations are available, and they
provide Born approximation formulas for the total and
differential cross sections ¢ and do/dE,, respectively.
The accuracy of the cross sections predicted by these
formulas depends on the atomic number and the
atomic incoherent scattering function for the target
atom. For low atomic numbers, the Born condition is
satisfied (except near threshold), but it is more difficult
to formulate accurate expressions for the incoherent
scattering function (Knasel, 1968), and for high
atomic numbers, the reverse conditions are true.

The relative contributions of the inelastic and elastic
pair processes described above must be evaluated in
order to determine the total number of pairs that are
produced experimentally. For this evaluation, the total
pair cross section is given by the sum of the elastic and
inelastic cross sections, o (elastic) and o(inelastic), and
the formulas for these cross sections are listed in Tables
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6.02(a) and 6.02(b), respectively. The cross-section
ratio o(inelastic) /o (elastic), which is predicted by
Formulas 3D-0005 and 3D-0009, is given in Fig. 8.01
for photon energies in the region between 10? and 10*
MeV. The results in Fig. 8.01 indicate that this ratio is
negligible (<0.02) for the high-Z (lead) target and is
large (>0.5) for the low-Z (helium) target. Because
the relative contribution of the inelastic pair process
increases as the atomic number decreases, it is important
to obtain more accurate data for the low-Z inelastic pair
cross sections such as provided by Knasel (1968). On
the other hand, the experimental data (references in
Note a, Formula 3D-0000) that are available for the
total elastic cross section show good agreement with the
predictions of the exact Formula 3D-0006 for high-Z
targets and for photon energies below 10 MeV.

The accuracy of the polarization formulas in Table
6.03 is uncertain because there are no experimental data
on polarization effects that can be compared with the
theoretical predictions. However, based on comparisons
of experimental and theoretical total cross sections, the
cross sections predicted by the exact formulas, 3D-2139,
3D-2249, 3D-3139, 3D-3229, 3D-3149, and 3D-3249,
are expected to have better than 19, accuracy if the
conditions of validity for the formulas are satisfied.

For pair production in an electron field, the cross
section formulas are specified in Table 7.01 for different
regions of the incident photon energy. As discussed by
Mork (1967), the cross sections predicted by these
formulas show good agreement with the available
experimental results (references to these results are
given in the notes of the formulas in Sec. VII). The
accuracy of the Votruba Formula 4B-0000 is uncertain
in the threshold region (k~4). Otherwise, the triplet
formulas in Table 7.01 are expected to give cross
sections with an accuracy of the order of the fine
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Fic. 8.01. Comparison of the cross-section ratio o(inelas-
tic) /o (elastic) for helium (Z=2) and lead (Z=82). The cross
section o (inelastic) refers to pair production in an atomic field
with atomic excitation, and is evaluated by Formula 3D-0005
for Z=82 and by Knasel (1968) for Z=2. The cross section
o (elastic) refers to pair production in an atomic field without
atomic excitation, and is evaluated by Formula 3D-0009 for
Z=82 and 2. Note that the photon energy is given in mega-
electron-volt units and is equal to 0.511%.
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structure constant (a=1/137) provided that the
specified conditions of validity are satisfied.

The experimental data that are presently available on
pair production in an atomic field pertain mostly to the
fotal pair cross section. Unfortunately, most of these
data which are partially summarized in Note a of
Formula 3D-0000 give relative values for the cross
section, and comparisons with theory are made with
various normalizing constants. There are few direct
measurements of the absolute total cross section (for
example, see West, 1956; Rao et al., 1963; Titus and
Levy, 1966; Garritson and Miller, 1968). These absolute
measurements have been carried out with monoenergetic
photons in the energy region from approximately 1.1 to
3.0 MeV, and the experimental results show good agree-
ment (within accuracies of 109, to 209%,) with the
cross sections that are predicted by the exact Formula
3D-0006 (Jaeger and Hulme, 1936; @verbg, Mork, and
Olsen, 1968) and summarized in Figs. 6.01 and 6.03.
Additional experimental results recently obtained by
Piowaty and Miller (1969) in the threshold energy
region from 1.1 to 1.5 MeV also show good agreement
with the cross sections predicted by Formula 3D-0006
for lead. In this energy region below 3 MeV, the results
show that for high-Z targets, the experimental cross
sections and the exact theoretical cross sections given
by Formula 3D-0006 may be factors of 2 larger than
the Born approximation cross sections predicted by the
Racah Formula 3D-0000. For low-Z targets, the
experimental cross sections include contributions both
from the elastic and the inelastic pair-production cross
sections discussed above and in Fig. 8.01.

In addition to the experimental data on total cross
sections discussed above, there are very few absolute
measurements of the various differential pair cross
sections summarized in Table 6.02. Experimental data
on differential cross sections are valuable not only
because they provide more detailed information on the
pair process, but also because they provide more
sensitive tests of the theory. Among the few experi-
mental studies in this category are the measurements by
Plimpton and Hammer (1963) of the positron energy
spectrum produced in high-Z targets at an emission
angle of 90° with the photon beam from a 75-MeV
synchrotron.* Also in this category are the large-angle
pair measurements (Blumenthal ef al., 1966; Ashbury
et al., 1967; Eisenhandler ef al., 1967) which were
carried out in the billion-electron-volt region with
carbon targets in order to test the predictions of the

* The experimental results in these measurements show an
order-of-magnitude disagreement with the predictions of the
Born approximation theory. Although this disagreement may be
attributed in part to the breakdown of the Born approximation,
a contributing factor may arise from the experimental difficulties
in determining absolute cross sections with bremsstrahlung pho-
ton beams which have a continuous energy distribution. More
studies are required to resolve this uncertainty, including meas-
urements with monoenergetic photon beams and exact calcula-
tions of the differential cross section for large-angle pair produc-
tion.
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Bjorken—Drell-Frautschi Formula 3D-3004 and the
validity of quantum electrodynamics at high energies.*

The above summary indicates that the present experi-
mental results on pair production are not sufficiently
comprehensive to establish the accuracy of the pair
formulas listed in Table 6.02. For the total cross section
below 3 MeV and above 15 MeV, the data show that
within the experimental uncertainties, the most accurate
cross sections are obtained from the exact Formulas
3D-0006 and 3D-0009, respectively, as shown in Table
8.01. Because of the success obtained with the exact
calculations for the total cross section, it is expected
that the most accurate differential pair cross section
may likewise be obtained from the exact differential
Formula 3D-1006 for the energy region below 3 MeV,
and Formulas 3D-1009, 3D-2009, and 3D-3009 for the
energy region above 15 MeV and for small angles.
However, for the other cases shown in Table 8.01, there
are considerable uncertainties. To remove these un-
certainties, there is a need for (a) more experimental
data with good accuracy on the total pair cross sections
in the intermediate energy region, 6 <k< 30, where only
interpolation procedures and semiempirical formulas
exist, (b) experimental data on the various differential
pair cross sections in the energy region where k<30,
(c) absolute pair cross section measurements in the
energy region where k> 30, and (d) studies of the total
and differential pair cross sections for targets with'low
atomic numbers in order to determine the relative con-
tributions of the elastic and inelastic pair-production
processes which are examined in Fig. 8.01.
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