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Abstract

Using analytical formulae which are exact in Born approximation, the doubly differential bremsstrahlung cross-section with form-
factor screening is calculated. For the atomic form factor parameters are applied which approximate self-consistent Dirac–Har-
tree–Fock–Slater calculations. The evaluation of the bremsstrahlung spectrum requires a single numerical integration. The results are
superior to the customary Bethe approximation, in particular at the high-energy part of the spectrum. At high energies the screening
correction can be added to any Coulomb-corrected cross-section without screening. In the present work, we are using a cross-section
calculated by means of Sommerfeld–Maue functions with additional higher-order terms.
r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The calculation of bremsstrahlung cross-sections is a
problem of long standing. The most simple approach, the
Born approximation for a pure Coulomb field (Bethe and
Heitler, 1934; Heitler, 1954), yields poor results for targets
with higher atomic numbers and near the short-wavelength
limit of the spectrum. Therefore a number of calculations
beyond the Born approximation have been performed. The
main improvements refer to the Coulomb and screening
corrections to the bremsstrahlung cross-section, in parti-
cular at high energies (Olsen, 1955; Olsen et al., 1957;
Sørenssen, 1965; Seltzer and Berger, 1985; Al-Beteri and
Raeside, 1989). Radiative corrections are usually small and
are not considered here. The best available approach
utilizes the relativistic partial-wave approximation to
describe the motion of the electron in the static field of
the target atom, and the multipole series expansion for the
photon (Tseng and Pratt, 1971). However, the evaluation
of the matrix element becomes computationally very

intensive which imposes severe limitations on the energy
range that can be handled.
In bremsstrahlung production the atomic screening of

the nuclear Coulomb potential is very important for
energetic incident electrons, especially in the low-energy
part of the spectrum. As was shown by Olsen et al. (1957)
the screening and Coulomb corrections of the bremsstrah-
lung cross-section integrated over the angles of the final
electrons are additive and nearly independent of each other
at high energies. Utilizing this property, the screening
correction is calculated by means of the analytical formulae
of Fronsdal and Überall (1958) which are exact in Born
approximation. The Coulomb correction is taken into
account by use of the cross section of Roche et al. (RDP,
1972) which was calculated with Sommerfeld–Maue (SM)
wave functions supplemented by higher-order terms. This
method is equivalent to the approach of Davies et al.
(1954) and Olsen (1955), but without resorting to the high-
energy and small-angle limits. Thus it is to be expected that
the validity of the present formulae extends to lower
energies.
In the following, relativistic units _ ¼ m ¼ c ¼ 1 will be

used, i.e., the energies of electrons and photons are
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expressed in units of the electron rest energy mc2, and the
momenta in units of mc, unless specified otherwise. Then
the energy–momentum relation of electrons reads !2 ¼
p2 þ 1 where ! is the total energy including the rest energy.
The unit of length is the Compton wavelength _=mc. The
energies of the incident and final electrons are designated
by !1 and !2, respectively, the corresponding momenta by
p1 and p2, and the photon momentum by k. The recoil
momentum of the target atom is q ¼ p1 ! p2 ! k.

2. Atomic screening according to Fronsdal and Überall

Assuming spherical symmetry, the screening function
FðrÞ is defined as the ratio between the electrostatic
potential UðrÞ experienced by an electron at a distance r
from the nucleus and the electrostatic potential of the bare
nucleus (Salvat et al., 1987):

UðrÞ ¼ !
aZ
r

FðrÞ, (1)

where a is the fine-structure constant and Z the atomic
number of the target atom. Screening functions are usually
based on the Thomas–Fermi statistical model of the atom
and its refinements. A few of them are founded on self-
consistent Hartree–Fock or Hartree–Fock–Slater calcula-
tions (see Salvat et al., 1987, for references). Analytical
approximations for the potential UðrÞ often employ the
superposition of Yukawa potentials in the form

UðrÞ ¼ !
aZ
r

X

i

ai e
!bir (2)

with
P

ai ¼ 1. The atomic electron density rðrÞ, normal-
ized to aZ, is connected to the screening function by
Poisson’s equation:

DUðrÞ ¼ !4prðrÞ (3)

resulting in

rðrÞ ¼
aZ
4pr

d2F
dr2

. (4)

The atomic screening of the nuclear Coulomb potential can
be taken into account by multiplying the triply differential
cross-section by ½1! F ðq;ZÞ'2 (Haug and Nakel, 2004),
where the form factor is defined as

F ðq;ZÞ ¼
1

aZ

Z
rðrÞ expðiq ( rÞd3r

¼
X

i

aib
2
i

q2 þ b2i
¼ 1!

X

i

aiq
2

q2 þ b2i
. ð5Þ

Moliére (1947) has approximated the Thomas–Fermi
potential by Eq. (2)with

bi ¼
bi
121

Z1=3; i ¼ 1; 2; 3, (6)

and

a1 ¼ 0:1; a2 ¼ 0:55; a3 ¼ 0:35,

b1 ¼ 6; b2 ¼ 1:2; b3 ¼ 0:3.

In the following calculations the screening parameters of
Salvat et al. (1987) are used. These authors have derived
analytical Dirac–Hartree–Fock–Slater screening functions
for atoms with atomic numbers Z ¼ 1292 by fitting them
to the same functional form as Moliére (1947), Eq. (2).1 If
the screening is described by the form factor (5), the
bremsstrahlung cross-section differential in energy and
solid angle of the photon is given by

d2s
dk dOk

¼
Z

d3s
dk dOk dOp2

½1! F ðq;ZÞ'2 dOp2

¼
Z

d3s
dk dOk dOp2

X3

i¼1

aiq
2

q2 þ b2i

" #2
dOp2

¼
Z

d3s
dk dOk dOp2

q4
X3

i¼1

a2i
ðq2 þ b2i Þ

2

(

þ
2a1a2

ðq2 þ b21Þðq2 þ b22Þ

þ
2a1a3

ðq2 þ b21Þðq2 þ b23Þ

þ
2a2a3

ðq2 þ b22Þðq2 þ b23Þ

)

¼
Z

d3s
dk dOk dOp2

q4
X3

i¼1

a2i
ðq2 þ b2i Þ

2

(

þ
2a1a2

b22 ! b21

1

q2 þ b21
!

1

q2 þ b22

 !

þ
2a1a3

b23 ! b21

1

q2 þ b21
!

1

q2 þ b23

 !

þ
2a2a3

b23 ! b22

1

q2 þ b22
!

1

q2 þ b23

 !)

dOp2 , ð7Þ

where Op2 denotes the solid angle of the outgoing electron.
The calculation of the integral

I1ðbÞ ¼
Z

d3s
dk dOk dOp2

q2

q2 þ b2

! "2

dOp2 (8)

is greatly facilitated by employing the relation

1

ðq2 þ b2Þ2
¼ !

q
qb2

1

q2 þ b2

! "
. (9)

The integral

I2ðbÞ ¼
Z

d3s
dk dOk dOp2

q4

q2 þ b2
dOp2 (10)
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was calculated analytically by Fronsdal and Überall (1958)
using the complete Bethe–Heitler cross-section resulting in

I2ðbÞ ¼ !
aZ2r20
2pkp1

2p2
W 2

ð4!21 þ b2Þð!1D1=k ! 2þ b2Þ
#

þ
L1

W
kðD1 þ 2b2Þ

$

þ
2k

D1
fb4 þ 2b2ð!21 þ p22Þ ! 8!1!2g

þ
4!21 þ b2

kW 2
fðD1 þ 2!1!2 ! 2ÞD1

þb2ðD1 ! 2!2kÞg
%

þ
k2L2

D1jp1 ! kj
2

D1
f4!22 þ b2ð1!D1Þg

$

þ
1

2ðp1 ! kÞ2
fD2

1 þ 2D1ð!1!2 ! 1Þ

þb2ðD1 ! 2!2kÞg
%
!

4k

D1
b2 lnð!2 þ p2Þ. ð11Þ

Here r0 denotes the classical electron radius and

D1 ¼ 2ð!1k ! k ( p1Þ, ð12Þ

W ¼ ½ðp1D1=kÞ2 þ 2b2ð!1D1=k ! 2Þ þ b4'1=2

¼ ½ð!1D1=k ! 2þ b2Þ2 þ 4ðp1 ) kÞ2=k2'1=2, ð13Þ

L1 ¼ ln
ð!1!2 ! 1ÞD1=k þ !2b

2 þ p2W

ð!1!2 ! 1ÞD1=k þ !2b
2 ! p2W

, ð14Þ

L2 ¼ ln
ðjp1 ! kjþ p2Þ

2 þ b2

ðjp1 ! kj! p2Þ
2 þ b2

. ð15Þ

By differentiating I2ðbÞ with respect to b2 one gets after
some algebraic manipulations integral (8):

I1ðbÞ ¼ !
qI2
qb2

¼
aZ2r20
2pkp1

16p2ð4!
2
1 þ b2Þ

ðp1 ) kÞ2

k2W 4

(

!
2p2
W 2
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2
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Setting b ¼ 0, i.e., neglecting screening, formula (16)
reduces to Sauter’s (1934) differential bremsstrahlung
cross-section in Born approximation. By means of the
integrals I1ðbÞ and I2ðbÞ, Eq. (7) yields the bremsstrahlung
cross-section including screening:

d2s
dk dOk

¼
X3

i¼1

a2i I1ðbiÞ þ
2a1a2

b22 ! b21
½I2ðb1Þ ! I2ðb2Þ'

þ
2a1a3

b23 ! b21
½I2ðb1Þ ! I2ðb3Þ'

þ
2a2a3

b23 ! b22
½I2ðb2Þ ! I2ðb3Þ'. ð17Þ

The correctness of Eq. (17) was checked by comparison
with the results according to Borie (1972). Borie has
calculated the cross-section d3s=ðdk dOk dqÞ in Born
approximation. After multiplying this cross-section by ½1!
F ðqÞ'2 it has to be numerically integrated over the recoil
momentum q. The results of this procedure are identical to
those of Eq. (17). Generally, the atomic screening is most
prominent at low photon energies and insignificant near
the short-wavelength limit.
Fig. 1 shows the photon angular distribution near

forward direction for 10-MeV electrons incident on a gold
target and photon energy 3MeV. For comparison the
cross-section in Born approximation without screening is
plotted. The screening correction is most pronounced at
y ¼ 0*. At larger photon angles, where the cross-section
falls off rapidly, the two curves converge. The calculation
was performed with the screening parameters of Salvat et
al. (1987); those of Moliére (1947) yield similar results.
The photon spectrum ds=dk is obtained from Eq. (17)

by a single numerical integration over the photon angles.
At high energies it is common to use the Bethe (1933)
approximation. However, this approximation requires that
the energies of both the incident and the final electrons
are large, !14!2b1. This condition is not satisfied at the
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high-energy part of the spectrum. If only the screening
correction is calculated, the failure of the Bethe approx-
imation in the vicinity of !2 ¼ 1 is not serious at very high
energies !1 since screening is not important near the tip of
the spectrum. Though, for lower energies of the incident
electron, the range of validity of the Bethe approximation
decreases. Fig. 2 shows the scaled photon spectra from a
gold target for incident electrons of E1 ¼ 1MeV as
calculated by numerical integration of Eq. (17) and by
the Bethe theory. The screening parameters are from Salvat
et al. (1987). The curves agree relatively well up to photon
energies of hn + 250 keV. At higher values of hn where
screening is still important, the Bethe cross-section is too
high. Of course, the cross-section in Born approximation
vanishes at the high-energy limit of the spectrum. This does
not matter since the screening correction is negligible near
p2 ¼ 0.

In Fig. 3 are plotted the scaled bremsstrahlung spectra
for E1 ¼ 10MeV. At this higher incident electron energy
the Bethe approximation yields better results except for the
high-energy part of the spectrum.

3. Cross-section according to RPD

In order to derive the cross-section of bremsstrahlung
beyond the Born approximation we start from the
calculation using SM wave functions (Elwert and Haug,
1969). This cross-section is valid for low atomic numbers of
the target atoms. At high energies of the incident electrons
it is feasible to include high-order Coulomb corrections to
the cross-section. Roche et al. (1972) have supplemented
the SM wave function by a correction term cc:

cðrÞ ¼ cSMðrÞ þ ccðrÞ. (18)

Designating the two parts of the SM function as

cSM ¼ ca þ cb, (19)

the bremsstrahlung matrix element is composed of

M ¼ MSM þM2a;1c þM2b;1b þM2b;1c þM2c;1a

þM2c;1b þM2c;1c, ð20Þ

where

MSM ¼ M2a;1a þM2a;1b þM2b;1a (21)

and the indices 1 and 2 refer to the incident and outgoing
electrons, respectively.
Bethe and Maximon (1954) have shown that at high

energies ! the term M2b;1b gives a contribution of order
!!2 ln ! while the contributions of M2a;1c and M2c;1a are of
order 1=!, and all the other terms lead to corrections of
higher order. Therefore Roche et al. (1972) have restricted
themselves to an evaluation of the correction matrix
element

Mc ¼ M2a;1c þM2c;1a. (22)
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In this approximation the total matrix element is

M ¼ MSM þMc (23)

leading to

jMj2 ¼ jMSMj2 þ 2ReðM,
SMMcÞ þ jMcj2. (24)

The resulting cross-section formula can be written as

d3s
dk dOk dOp2

¼
d3s1

dk dOk dOp2

þ
d3s2

dk dOk dOp2

. (25)

The main term, d3s1=ðdk dOk dOp2 Þ, is identical to the
cross-section of Elwert and Haug (1969). The correction
term, d3s2=ðdk dOk dOp2Þ, is obtained from the second and
the third term of the matrix element squared (24). The
cross-sections have the form (Roche et al., 1972)

d3s1
dk dOk dOp2

¼
aZ2r20
p2

kp2
p1

Nf½!1!2 ! 1

! ðk̂ ( p1Þðk̂ ( p2Þ'jJ1j2

þ ½!1!2 þ 1þ ðk̂ ( p1Þðk̂ ( p2Þ'ðjJ2j
2 þ jJ3j2Þ

þ 2Re½ðJ,3 ! J,2Þ ( fp1ðJ2 ( k̂Þðp2 ( k̂Þ

! p2ðJ3 ( k̂Þðp1 ( k̂Þg

! ð!1!2 þ 1þ p1 ( p2ÞðJ2 ( k̂ÞðJ
,
3 ( k̂Þ

þ ðJ2 ( p1ÞðJ
,
3 ( p2Þ ! ðJ2 ( p2ÞðJ

,
3 ( p1Þ

þ !1J
,
1fJ3 ( p2 ! ðJ2 ( k̂Þðp2 ( k̂Þg

þ !2J
,
1fJ2 ( p1 ! ðJ3 ( k̂Þðp1 ( k̂Þg

þ ðJ2 ( J,3Þfp1 ( p2 ! ðk̂ ( p1Þðk̂ ( p2Þg'g, ð26Þ

d3s2
dk dOk dOp2

¼ a2Z3r20
kp2ðq ( kÞ
p1qD1D2

N

)
2

p
Re½ðf!1!2 ! 1! ðk̂ ( p1Þðk̂ ( p2ÞgJ1

#

þ !1fJ3 ( p2 ! ðJ2 ( k̂Þðp2 ( k̂Þg

þ !2fJ2 ( p1 ! ðJ3 ( k̂Þðp1 ( k̂ÞgÞe
iF'

þaZ
q ( k

qD1D2
½!1!2 ! 1! ðk̂ ( p1Þðk̂ ( p2Þ'

&
, ð27Þ

where k̂ ¼ k=k denotes a unit vector and

N ¼
4p2a1a2

ðe2pa1 ! 1Þð1! e!2pa2 Þ
, (28)

a1 ¼ ð!1=p1ÞaZ; a2 ¼ ð!2=p2ÞaZ, (29)

J1 ¼ 2
!2
D1

!
!1
D2

! "
V þ ia2xW

q2

þ 2i
ð1! xÞW
D1D2

½!1a2ðm=D2 ! 1Þ

! !2a1ðm=D1 þ 1Þ', ð30Þ

J2 ¼
V þ ia2xW

D2q2
q

!
ia2ð1! xÞW

D1D2
½ðm=D2 ! 1Þ q! P=p1', ð31Þ

J3 ¼
V þ ia2xW

D1q2
q

!
ia1ð1! xÞW

D1D2
½ðm=D1 þ 1Þ q! P=p2', ð32Þ

V ¼ F ð!ia1; ia2; 1; xÞ, (33)

W ¼ F ð1! ia1; 1þ ia2; 2; xÞ, (34)

x ¼ 1!
D1D2

mq2
, (35)

D1 ¼ 2ð!1k ! k ( p1Þ; D2 ¼ 2ð!2k ! k ( p2Þ, (36)

m ¼ 2ð!1!2 þ p1p2 ! 1Þ; P ¼ p1p2 þ p2p1, (37)

F ¼ a1 lnðq2=D2Þ ! a2 lnðm=D2Þ. (38)

The hypergeometric functions V and W differ from those
of Elwert and Haug (1969) in that their argument x is
0pxo1 which is advantageous in numerical evaluations.
For that reason the functions J1; J2, and J3 are different
from the functions I1=K1; I2=K1, and I3=K1 of Elwert and
Haug (1969).
Comparison of photon spectra computed by numerical

integration of (25) shows good agreement with experi-
mental data even for targets with high atomic numbers.
Deviations at the low-energy part of the spectra are
probably due to the neglect of atomic screening in the
calculation. Roche et al. (1972) have found that the part of
order a2Z3 of the correction term (27) yields values smaller
than those given by the part of order a3Z4. Moreover, the
cross-section displays a correct behavior near the high-
frequency limit of the spectrum where the Born-approx-
imation formula fails (see below).
Fig. 4 shows the photon angular distribution near

forward direction for a gold target (Z ¼ 79), incident
electrons of 10MeV, and photon energy 7MeV. For
comparison the cross-section in Born approximation is
displayed. The Coulomb correction is most distinct near
the forward angle y ¼ 0*. At larger angles, where the two
curves converge, the cross-section decreases rapidly due to
relativistic beaming.
The screening correction to the cross-section of Roche

et al. (1972) is performed by applying the result of Olsen et
al. (1957) that the bremsstrahlung cross-section integrated
over the motion of the final electron is additive at high
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energies, i.e., Coulomb and screening corrections are
independent of each other:

d2s
dk dOk

! "screened

exact

+
d2s

dk dOk

! "no screening

exact

þ
d2s

dk dOk

! "screened

Born

!
d2s

dk dOk

! "no screening

Born

" #

. ð39Þ

Thus, one simply adds the effect of screening as calculated
in Born approximation (see Section 2) to the RDP cross-
section (25). The second term put in brackets on the right-
hand side of (39) is the (negative) difference between
Eq. (17) and Sauter’s (1934) doubly differential cross-
section. The same procedure holds for the photon spectrum
ds=dk.

The choice of the RDP cross-section (25) as the ‘‘exact’’
unscreened cross-section in Eq. (39) is justified for the
following reasons:

(1) For low atomic numbers Z the first term of Eq. (25) has
been shown by Fink and Pratt (1973) to be a significant
improvement over the Born approximation. In parti-
cular, the cross-section remains finite at the short-
wavelength limit p2 ¼ 0.

(2) At high energies the first term of Eq. (25) is a good
approximation even for high atomic numbers (Bethe
and Maximon, 1954). Moreover, the additional as-
sumptions of Bethe and Maximon are not made, viz., to
drop terms of relative order 1=!2 and 1=k2, and to use
the small-angle approximation. The second term of
Eq. (25) provides a supplementary correction for high
values of Z and was shown by Roche et al. (1972) to
improve the agreement with experimental data.

In Fig. 5 is displayed the photon angular distribution
near forward direction as calculated by means of Eq. (39)
for a tin target ðZ ¼ 50Þ, incident electrons of 2MeV, and
photon energy hn ¼ 0:5MeV. In comparison with the
dashed curve showing the RDP cross-section, Eq. (25),
the large effect of screening near the photon angle y ¼ 0* is
conspicuous.
The effect of screening on the spectrum of photons

emitted into a certain direction is depicted in Fig. 6 for the
parameters of an experiment performed by Starfelt and
Koch (1956). The dashed curve is calculated by means of
the RDP cross-section differential with respect to photon
energy and angle. It is seen that the unscreened cross-
section can be only applied near the high-energy part of the
spectrum.
The bremsstrahlung cross-section for high incident

electron energies, differential in the photon energy and
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including form-factor screening and Coulomb corrections,
has been calculated by a number of authors. An often used
approach is the DBMO formula resulting from the work of
Davies et al. (1954) and Olsen (1955) (see Tseng and Pratt,
1979). It is believed that this calculation is valid for
E1415250MeV (depending on Z) and !2b1. A similar
formula was derived by Sørenssen (1965). Seltzer and Berger
(SB, 1985) tabulated a comprehensive set of data obtained
through the synthesis of various theoretical results. They are
considered to constitute the best available bremsstrahlung
spectra yet, including the contribution of electron–electron
bremsstrahlung. The present cross-sections are in excellent
agreement with those of SB for targets with low and
intermediate atomic numbers, except for the neighborhood
of the high-energy limit. Al-Beteri and Raeside (AR, 1989)
have derived an empirical formula for the cross-section in
the MeV range exhibiting better agreement with experiment
than existing bremsstrahlung cross-sections over wide ranges
of electron energies and target atomic numbers. The partial-
wave formalism can only be applied up to incident electron
energies of E1 + 2MeV. In order to bridge the gap between
the results for E1p2MeV and the DBMO approach, Tseng
and Pratt (1979) used a partial-wave interpolation method
to calculate the bremsstrahlung energy spectra from atoms
with Z ¼ 13 and 92 for E1 ¼ 5 and 10MeV. The cross-
sections of the present calculations compare favorably with
those of Tseng and Pratt for the low atomic number Z ¼ 13
down to E1 ¼ 1MeV. For Z ¼ 92 there are larger
discrepancies, especially near the high-energy limit of the
spectrum.

A comparison of some of these cross-sections is
displayed in Fig. 7 for Z ¼ 41 (Nb) and incident electrons
of 15MeV.2 The data of SB would not be distinguishable
from the present ones (RDP) except for the neighborhood

of the high-energy limit. It is interesting to note that the
AR values are systematically lower than the RDP, DBMO,
and SB cross-sections.
For very high energies of the incident electrons the SB

cross-sections are close to the values of DBMO up to 90%
of the high-energy limit, whereas the present data (RDP)
are a little higher. Table 1 shows a sample of cross-sections
for 50-MeV electron impinging on a tungsten target
ðZ ¼ 74Þ.
Most of the measurements of bremsstrahlung cross-

sections were performed many decades ago (see Al-Beteri
and Raeside, 1989) and are subject to large experimental
errors. The present calculations were applied to recent
experiments using photon-induced reactions (Schwengner
et al., 2005). The bremsstrahlung was produced by 13.
2-MeV electrons impinging on a thin niobium target
ðZ ¼ 41Þ. The proton spectra originating from the photo-
disintegration of deuterons were used to derive the photon
spectra. In another experiment (Schwengner et al., 2007)
the photon-scattering target was combined with 11B
atoms in order to determine the absolute photon flux.
Fig. 8 shows the spectral photon flux Fg calculated by
means of the RDP cross-section with screening correction.
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Table 1
Bremsstrahlung cross-sections ds=dðhnÞ in units of b/MeV including
screening correction for Z ¼ 74 (W) and electron energy E1 ¼ 50MeV

hn ðMeVÞ 10 15 20 25 30 35 40 45 50

RDP 5.04 3.06 2.11 1.566 1.225 0.990 0.805 0.609 0.162
SB 4.84 2.94 2.03 1.508 1.183 0.961 0.789 0.614 0.137
DBMO 4.80 2.91 2.01 1.499 1.176 0.955 0.782 0.601 0.199
AR 4.89 2.97 2.05 1.523 1.191 0.961 0.780 0.588 0.132
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Fig. 8. Spectral photon flux determined in an experiment investigating
photon-induced reactions. The bremsstrahlung photons were produced by
13.2-MeV electrons impinging on a niobium target ðZ ¼ 41Þ. The curve
calculated by means of the RDP cross-section with screening correction
was fitted to the experimental points.

2The cross-sections of Fig. 7 do not include the contribution of
bremsstrahlung in the field of atomic electrons.
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The theoretical flux curve was fitted to the four experi-
mental points representing the absolute flux at excitation
energies of the 11B nucleus.

At the short-wavelength limit ðp2 ¼ 0Þ the argument x of
the hypergeometric functions V and W tends to zero and
a2 ! 1. The product a2x takes the finite value

ax ¼ lim
p2!0

a2x

¼ 2a
p1
D1

f!1 ! k ( p1 ! p̂1 ( p̂2

þ ðp1 ! k ( p̂1Þk ( p̂2g. ð40Þ

Therefore, the functions V and W transform to the
confluent hypergeometric functions V 0 and W 0:

V ! V 0 ¼ F ð!ia1; 1; iaxÞ, ð41Þ
W ! W 0 ¼ F ð1! ia1; 2; iaxÞ. ð42Þ

For p2 ¼ 0 cross-section (26) is still a good approximation
at low atomic numbers Z (Fink and Pratt, 1973). However,
the correction term (27) is no longer reliable since the
assumption !2b1 does not hold there. For the high-
frequency end of the bremsstrahlung spectrum there exist
two analytical calculations for the limit !1 ! 1 including
higher-order Coulomb corrections. Using an exact wave
function for the final electron state, Deck et al. (1964) have
evaluated the cross-section to the first three nonvanishing
orders in aZ. Jabbur and Pratt (1963, 1964) started from
the relationship between the atomic photoeffect and the tip
region of the bremsstrahlung spectrum. They gave expres-
sions for the cross-sections sjl for s; p, and d final angular
momentum states, including a double integral which was
expanded into a power series in a ¼ aZ up to relative order
a3. The two methods yield results which are nearly equal
for low-Z elements, differ by 3% for Ag ðZ ¼ 47Þ, and
about 12% for UðZ ¼ 92Þ. It is to be expected that the
cross-sections of Jabbur and Pratt are most accurate. Their
numerical results are easily reproduced by multiplying their
analytical results by a correction factor given by Seltzer
and Berger (1985). The latter authors also suggested an
interpolation method to get results for lower values of the
incident electron energy.
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