Two Neutron Correlations in Photofission

Physics

Upon scission, fission fragments (FF's) are rapidly accelerated in opposite directions due to coulomb repulsion.

(right) Fission neutrons are emitted after the fission fragments have been fully accelerated.

The back-to-back motion of the fully accelerated FF's give a large boost to fission neutrons.

<u>Consequence</u>: Correlated fission neutrons have **energy dependent** anisotropic opening angle distributions.

Simulated two-neutron opening angle of a ²⁵²Cf fission source

¹Idaho State University, Pocatello, ID, USA ²Pacific Northwest National Laboratory, Richland, WA, USA

Lack of correlated neutron data for photofission.

- Photofission measurements enable selective investigation of nuclei due
- to the low and well-defined angular momentum transfer.
- Experimental verification of correlated photofission models used in Monte Carlo codes.

Experiment

Use a pulsed LINAC to produce a beam of bremsstrahlung photons which induce fission in an actinide target. Fission neutrons are detected in a large scintillation detector array capable of measuring detection time and location.

(Above) Depiction of the array of neutron scintillators surrounding the target.

J. Burggraf¹, D. S. Dale¹, T. A. Forest¹, G. A. Warren², S. C. Stave², S. Behling²

Motivation

30" x 6" x 1.5" scintillators.

Light guides and PMT on each end.

Wrapped in reflective material.

Position information to within ± 10 cm obtained by timing delay between PMT's mounted at the two ends.

(above)

Neutrons from different fissions (red dotted line) have uniform opening angle distribution, however, due to biases caused by detector array geometry, a non-uniform distribution is seen.

Two-neutron "trues" and "accidentals"

<u>Analysis</u>

(above)

(left)

uncorrelated interactions. These are undesirable. singles rate, R_n.

event. These contain the physics under investigation. The trues rate is proportional to the neutron singles rate.

We have:

level

Particle time of fligh

the photon background.

Polyethylene is placed along the sides to shield from neutron cross-talk.