CW POSITRON SOURCE AT CEBAF

by

Serkan Golge
B.S. July 2002, Fatih University
M.S. December 2005, Old Dominion University

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the
Requirement for the Degree of

DOCTOR OF PHILOSOPHY

PHYSICS

OLD DOMINION UNIVERSITY
July 2008

Approved by:

__
Charles E. Hyde (Director)

__
Arne Freyberger

__
Anatoly Radyushkin

__
Moskov Amarian

__
Sacharia Albin
ABSTRACT

CW POSITRON SOURCE AT CEBAF

Serkan Golge
Old Dominion University, 2008
Director: Dr. Charles E. Hyde

Feasibility of a CW positron source for the 6 GeV (and 12 GeV upgrade) recirculating linacs at Jefferson Lab is provided. The proposed 100nA CW positron source has several unique characteristics; high incident electron beam power (100kW), 10 MeV/c incident electron beam momentum, CW incident beam and CW production. Positron production with 10 MeV/c electrons has several advantages; the energy is below neutron threshold activation so the production target and the optical system will not become activated during use; CEBAF requires a very low energy spread, so the absolute energy spread is bounded by the low incident energy. These advantages are offset by the large angular distribution of the outgoing positrons. Results of simulations of the positron production, capture and acceleration are presented. IAC test results and CEBAF admittance measurements are shown as well. Energy flow, power deposition and thermal management of the elements present a challenge and are included in the simulations.
ACKNOWLEDGEMENTS

I would like to thank...
TABLE OF CONTENTS

List of Tables .. vi
List of Figures .. vii

CHAPTERS

I Introduction ... 1

II Physics with Positrons 2
 II.1 Nuclear Physics 2
 II.1.1 Deeply Virtual Compton Scattering (DVCS) 2
 II.1.2 2-photon Annihilation 2
 II.1.3 Dark Matter 2
 II.2 Material Science 2

III Positron Sources 3
 III.1 Ways To Create Positrons 3
 III.2 Past and Present Sources 3
 III.3 Review of ILC Positron Source 3

IV Basic Description of CEBAF 4
 IV.1 Beam Transport Terminology 4
 IV.2 Injector .. 4
 IV.3 ARC ... 4
 IV.4 Admittance Measurement at CEBAF 4

V Simulation Results 5
 V.1 Simulation of Pair Production 5
 V.1.1 Benchmarking with Theory 5
 V.2 Optimization 5
 V.3 Design of Lattice 5
 V.3.1 Genetic Algorithm 5
 V.3.2 DIMAD and OPTIM schematics 5

VI IAC Test Results 6
 VI.1 Profile .. 6
 VI.2 Design .. 8
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Changing tungsten thickness vs the yield of positrons per electron at 10 MeV incoming electron beam.</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Changing tungsten thickness vs the yield of positrons per electron at 14 and 25 MeV incoming electron beams.</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Momentum and Phase space distribution of positrons right after tungsten.</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>Momentum vs. opening angle of positrons. Incoming electron beam is 10 MeV/c</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>Momentum bins vs the yield of positrons for ensembles of 40, 100 and 1000 mm.mrad transverse phase spaces.</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>IAC tunable positron design including an achronatic lattice.</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>IAC design Optim file showing the evolution of β_{xy}, and D_{xy} functions.</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>IAC Green Run lattice schematic.</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>IAC Green Run beta-evolution through the lattice. The blue curve is the dispersion.</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>Green Run G4Beamline snapshot.</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>$X - X'$ phase space of positrons at the detector located in the hole.</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>Alternative Beam line.</td>
<td>12</td>
</tr>
</tbody>
</table>
CHAPTER I
INTRODUCTION
CHAPTER II
PHYSICS WITH POSITRONS

II.1 NUCLEAR PHYSICS

II.1.1 Deeply Virtual Compton Scattering (DVCS)

II.1.2 2-photon Annihilation

II.1.3 Dark Matter

II.2 MATERIAL SCIENCE
CHAPTER III
POSITRON SOURCES

III.1 WAYS TO CREATE POSITRONS

III.2 PAST AND PRESENT SOURCES

III.3 REVIEW OF ILC POSITRON SOURCE
CHAPTER IV

BASIC DESCRIPTION OF CEBAF

IV.1 BEAM TRANSPORT TERMINOLOGY

IV.2 INJECTOR

IV.3 ARC

IV.4 ADMITTANCE MEASUREMENT AT CEBAF
CHAPTER V
SIMULATION RESULTS

V.1 SIMULATION OF PAIR PRODUCTION
V.1.1 Benchmarking with Theory
V.2 OPTIMIZATION
V.3 DESIGN OF LATTICE
V.3.1 Genetic Algorithm
V.3.2 DIMAD and OPTIM schematics
CHAPTER VI
IAC TEST RESULTS

VI.1 PROFILE

garget thickness optimization is an important process to get the highest yield. Fig. 1 and Fig. 2 show conversion target thickness vs. conversion efficiency of positrons for different incoming electron beam energies. It can be seen from Fig. 1 that 10 MeV electron beam yield peaks around 1.25 mm ($L_0 = 0.36X_0$) of tungsten thickness.

![Image of Fig. 1: Changing tungsten thickness vs the yield of positrons per electron at 10 MeV incoming electron beam.]

In the simulation the driving electron beam is; $P(e^-) = 10$ MeV/c±5%, $\sigma_{xy} = 3$mm. Fig. 3(a) shows the momentum distribution of emitted positrons from tungsten, and $X - X'$ phase space is shown in Fig. 3(b).
Fig. 3: Momentum and Phase space distribution of positrons right after tungsten.

Fig. 4 we see the momentum vs. opening angle of positrons. Here opening angle(X') is defined as the following:

$$x' = \arctan\frac{P_x}{P_z}. \quad (1)$$

where P_x and P_z are momentum components of positrons.

While it is clearly seen that momentum peaks around 2 MeV, within the desired emittance space 3 MeV positrons give us much yield. Fig. 5 shows momentum bins vs the yield of positrons for different emittances. For example; 2 represents positron momentums between; $1.75 \text{ MeV/c} \leq P(e^+) \leq 2.25 \text{ MeV/c}$.
FIG. 4: Momentum vs. opening angle of positrons. Incoming electron beam is 10 MeV/c

FIG. 5: Momentum bins vs the yield of positrons for ensembles of 40, 100 and 1000 mm.mrad transverse phase spaces.

VI.2 DESIGN

The need for confirming our simulation results and ability to prepare a big scale project led us to do a preliminary measurement at Idaho Accelerator Center (IAC). First and most suitable design for our expectations is the following design: A quadrupole triplet selects tunable certain momentum band of positrons and dumps the off momentum positrons and electrons which is positioned right after the converter, another triplet prepares twiss parameters for the bends, a dipole-quad-dipole achromat design seperates positrons from electrons. Achromatic design supresses the huge momentum dispersion as well. It is sketched out in Fig. 6

The lattice design including evolution of the twiss-beta function is shown in Fig. 7.
The beta function nicely evolves without compromising the global lattice limit ($\sigma_{xy} \leq \frac{d}{2}$ to get $\%$ 95 transportation).

In this proposed design, we will have the opportunity to tune the positron beam with desired momentum spread; dump off-momentum electrons and positrons at first stage; separate the remaining electrons (the ones with the same momentum band of e^+); suppress the dispersion with the dipole-quad-dipole achromatic lattice; and finally transport noise free beam to the detector area.

Another design (let’s call ‘Green Run’), with a doublet positioned right after the converter tungsten, we will not be able to control the beam as we wanted, and dispersion will continue to grow rapidly leading all the off-momentum positrons scraped off. A schematic is shown in Fig. 8.

The optim twiss-beta evolution graph is shown in Fig. 9. As it can be seen in the graphs, dispersion cannot be suppressed with this configuration.
FIG. 8: IAC Green Run lattice schematic.

A G4Beamline schematic is shown in Fig. 10. Here yellow cylinders are Q3 Type quads at IAC. Red figures are 45° bends; purple is the beam pipe and lead block is shown in brown and white long cylinder is the accelerator section.

Simulation shows a beam profile of positrons at the detector as shown in Fig. 11.

With our first optimal configuration the conversion efficiency $e^+/e^- = 40 \times 10^{-8}$, while in the 'green run' we have 10^{-8} which is 40X less.

The last configuration option is shown in Fig. 12. This configuration proposes an alternative beam line parallel to the primary 25 MeV beam line, with a 90° bend to steer positrons into the detector hall. This option is not more advantageous than the Green Run, since a 90° bend is not sufficient alone to suppress the dispersion.
FIG. 10: Green Run G4Beamline snapshot.

FIG. 11: $X - X'$ phase space of positrons at the detector located in the hole.
FIG. 12: Alternative Beam line.