$sigma_x=0.1; => 0.1 $sigma_y=0.1; => 0.1 $sigma_xpri= 0.01; => 0.01 $sigma_ypri= 0.01; => 0.01 $Emit_x = $sigma_x*$sigma_xpri; => 0.001 $Emit_y=$sigma_y*$sigma_ypri; => 0.001 $Beta_x=($sigma_x )*($sigma_x)/$Emit_x; => 10 $Beta_y=($sigma_y)*($sigma_y)/$Emit_y; => 10 $Alfa_x=0.0; => 0 $Alfa_y=-0.00; => 0 #$Emit_x=270e-4 $Emit_y=270e-4 #$Beta_x=3.333 $Beta_y=3.333 $P=3.0; => 3 $M_0=0.511006; => 0.511006 $E=sqrt($M_0*$M_0+$P*$P); => 3.04321 $T=sqrt($M_0*$M_0+$P*$P)-$M_0; => 2.532204 $del= 0; => 0 $delE=$del*$E; => 0 # OptiM # Insert comment here-Energy is the: Kinetic Energy>>> T=sqrt(Eo^2+P^2)-Eo Energy[MeV]=$T Mass[MeV]=$M_0 Emittance: ex[cm]=$Emit_x ey[cm]=$Emit_y DP/P=0.08 Initial: BetaX[cm]=$Beta_x BetaY[cm]=$Beta_y AlfaX=$Alfa_x AlfaY=$Alfa_y DispersX[cm]=0.0 DispersY[cm]=0.0 Dsp_PrimeX=0.0 DspPrimeY=0.0 X[cm]=0.000 Y[cm]=0.000 Z[cm]=0.000 S[cm]=0.000 tetaX[deg]=0 tetaY[deg]=0 begin lattice. Number of periods=1 oD0 q0 oD1 q1 oD2 q2 oD3 #q3 oD4 q4 oD5 q5 oD6 gC1 bC1 GC1 oD7 q6 oD8 q7 oD9 q8 oD10 gC2 bC2 GC2 oD11 q9 oD12 q10 oD13 q11 oD14 end lattice #Sector Dipole B[kG]=-0.315178672 begin list #Hq1 Ax[cm]=1.27 Ay[cm]=1.27 Shape=1 OffsetX[cm]=0 OffsetY[cm]=0 Tilt[deg]=0 gC1 B[kG]=0 Angle[deg]=0 EffLen[cm]=0 Tilt[deg]=0 bC1 L[cm]=30 B[kG]=-0.31517867 G[kG/cm]=0 Tilt[deg]=0 GC1 B[kG]=0 Angle[deg]=0 EffLen[cm]=0 Tilt[deg]=0 gC2 B[kG]=0 Angle[deg]=0 EffLen[cm]=0 Tilt[deg]=0 bC2 L[cm]=30 B[kG]=-0.28517867 G[kG/cm]=0 Tilt[deg]=0 GC2 B[kG]=0 Angle[deg]=0 EffLen[cm]=0 Tilt[deg]=0 q0 L[cm]=13 G[kG/cm]=0.0438324 Tilt[deg]=0 q1 L[cm]=13 G[kG/cm]=-0.06514358 Tilt[deg]=0 q2 L[cm]=13 G[kG/cm]=0.04491553 Tilt[deg]=0 q3 L[cm]=20 G[kG/cm]=0.01669189 Tilt[deg]=0 q4 L[cm]=20 G[kG/cm]=-0.00280798 Tilt[deg]=0 q5 L[cm]=20 G[kG/cm]=0.01510694 Tilt[deg]=0 q6 L[cm]=13 G[kG/cm]=-0.01901533 Tilt[deg]=0 q7 L[cm]=13 G[kG/cm]=0.03655591 Tilt[deg]=0 q8 L[cm]=13 G[kG/cm]=-0.02313257 Tilt[deg]=0 q9 L[cm]=20 G[kG/cm]=0.01196053 Tilt[deg]=0 q10 L[cm]=20 G[kG/cm]=-0.00837701 Tilt[deg]=0 q11 L[cm]=20 G[kG/cm]=0.0031277 Tilt[deg]=0 oD0 L[cm]=4.0329349 oD1 L[cm]=3.5132596 oD2 L[cm]=5.982298 oD3 L[cm]=9.65149 oD4 L[cm]=7.05 oD5 L[cm]=6.7 oD6 L[cm]=50.5 oD7 L[cm]=16.8 oD8 L[cm]=10.7 oD9 L[cm]=12.45 oD10 L[cm]=10.9 oD11 L[cm]=30 oD12 L[cm]=4.510611 oD13 L[cm]=5.9913326 oD14 L[cm]=200.5 end list BetaFitBlock dL[cm]=0.001 dB[kGs]=0.001 dG[kGs/cm]=0.001 #Required parameters and their accuracy listed below(dPARM<=0. - no fitting) #Maximum Betas[cm] and MomentumCompaction are on the next line BtXmax=200 dBtXmax=1 BtYmax=200 dBtYmax=1 Alfa=0 dAlfa=0 #Fitting parameters at the end of the lattice Beta_X[cm]=160 dBeta_X[cm]=0 Alfa_X=0 dAlfa_X=0 Beta_Y[cm]=100 dBeta_Y[cm]=0 Alfa_Y=0 dAlfa_Y=0 Disp_X[cm]=0 dDisp_X[cm]=1e-08 D_prime_X=0 dD_prime_X=1e-11 Disp_Y[cm]=0 dDisp_Y[cm]=0 D_prime_Y=0 dD_prime_Y=0 Qx=0 dQx=0 Qy=0 dQy=0 #Fit at element with number =2 #To create a Fitting at intermidiate element: uncomment the line above, # write the correct element number and insert six lines describing the # fit parameters. You can use up to 4 intermidiate points #Each point has to be determined as described above # #Insert groups of elements below. Each group has to be located on one line. #Start from the letter describing the type of changable parameter such as: L:, B:, G: G: q0 G: q1 G: q2 G: q3 G: q4 G: q5 G: q6 G: q7 G: q8 EndBetaFitBlock TrajParamBlock X[cm]=0. Teta_X[rad]=0. Y[cm]=0. Teta_Y[rad]=0. s[cm]=0. DeltaP/P=0. EndTrajParamBlock 4D_BetaBlock Beta_X_1[cm]=$Beta_x Beta_X_2[cm]=0. Alfa_X_1=$Alfa_x Alfa_X_2=0. Beta_Y_1[cm]=0. Beta_Y_2[cm]=$Beta_y Alfa_Y_1=0. Alfa_Y_2=$Alfa_y Nu_1[deg]=0. Nu_2[deg]=0 U=0 Emit1[cm]=$Emit_x Emit2[cm]=$Emit_y DispX[cm]=0. DispY[cm]=0 DispXpr[cm]=0. DispYpr[cm]=0 End4DBetaBlock SpaceChargeBlock BeamCurrent[A]=0.1 BunchLength[cm]=1.0 dP/P=0.17 Alpha[-1,1]=0. S_Offset[cm]=0. EndSpaceChargeBlock