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PRIOR INFORMATION AND AMBIGUITY IN INVERSE PROBLEMS
E. T. Jaynes

ABSTRACT. Mathematically i11-posed problems, asking us to invert
a singular or nearly singular operator, appear constantiy in
applications. Many attempts have been made to deal with such
problems by inventing ad hoc algorithms which imitate the direct
mathematical inversion that one would like to carry out.

But if we view these as problems of inference rather than
inversion there is a formal Decision Theory that, by taking into
account prior information and vajue Judgments about the purpose
of the inversion, can often guide us without ad hockery to an
algorithm that is unique, numerically stable, and demonstrably
optimal by some rather basic criteria of rational choice.

The method is illustrated by two simple examples, inversion
of an integral equation in which the instability is resolved by
prior information about the ¢lass of possible solutions; and
inversion of a singular matrix (image reconstruction) in which
the ambiguity is resolved by entropy factors; i.e., prior
information about multiplicity.

1. ILL-POSED PROBLEMS. The terms "Well-Posed" and "I11-Posed" are commonly
attributed to Hadamard.1 However, in the Nineteenth Century Bertrand2 applied
the epithet "mal posée" to his famous paradox in probability theory, in which
one asks for the distribution of lengths of chords drawn at random on a circle.
He evidently meant the term in the sense of "underdetermined”.

In applications, underdetermined problems are the rule rather than the
exception. In physics, engineering, or statistics it usually requires creative
imagination (inventing models, or prior information such as initial conditions
that we do not actually possess) to convert a real problem into one which is
"well-posed" in the sense that the statement of the problem gives just enough
information to determine one unique solution. _In biology, econometrics,
geophysical exploration, medical diagnosis, and synthesis of electrical
filters or optical systems, a truly well-posed problem is virtually unknown.

We must therefore, of necessity, learn to reason somehow in togically
indeterminate situations. G. Po]ya3 termed this "plausible reasoning” and
showed that even a pure mathematician uses it constantly. Polya's plausible
reasoning remained qualitative, although he noted a loose correspondence with
the relations of probability theory.
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The @uantitative use of probability theory for this purpose is what we
shall call inference. As we use it, this term includes “"Bayesian statistics",
but is more general in that Bayes' theorem is cnly one of the useful principles
of inference. Others presently known include group invariance, maximum entropy,
and coding theory.

Examples of underdetermined problems are spectrum analysis, image reccn-
struction, determining the shape of a target from its radar reflections,
determining crystallographic or macromolecular structure from X-ray scattering
patterns; and as we shall see, the Statistical Mechanics of J. Willard Gibbs
for predicting thermodynamic properties--in all cases from incomplete and/or
approximate data.

A problem might be i11-posed, in the more general sense of “not well-posed",
in other ways. Usually, an overdetermined problem would be considered not
merely il1-posed, but wrongly posed, calling for reformulation rather than
inference. But a problem may also be formally well-posed, but nevertheless
pragmatically without a unique solution because of practical difficulties such
as instability, that make it impossible to use the solution with real data.

Examples of such "morally il11-posed" problems are analytic continuation
from numerical data, some Fredhoim integral equations, extrapolating & solution
of the diffusion equation backward in time, determining subsurface structure
from surface gravimetric or seismic data, and the mechanics of billiard balls.

An unstable problem may be much like an underdetermined one, in that the
formal solution must be supplemented by additional means, such as a preliminary
smoothing or other "massaging" of the data in a particular way, or putting in
a preliminary bias favoring some possibilities over others. The rationale for
these is not always clear to the uninitiated, since it often arises out of prior
knowledge of the subject-matter that is too extensive to be repeated in the
statement of the problem, and can only be presumed "understood by the expert".

Furthermore, in both underdetermined and unstable problems we may require
not only inference making use of expert prior information, but also value
judgments indicating what we want the solution to accomplish, in order to
arrive at useful results. 7

The above remarks sound very much like an introduction to Statistical
Decision Theory, which shows us how to take prior information and value
judgments into account, in a way that is proved optimal by some very fundamental
and pretty nearly inescapable criteria of rational behavior. Indeed, the
problem of inverting some singular or nearly singular operator A {(i.e., given
y = Ax, estimate x} would seem to call out for decision theory, just as clearly
as the problem of driving a nail calls out for a hammer. This makes it curious
that so 1little use has been made of this theory--or even probability theory--in
dealing with i11-posed probliems.
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2. AD HOC ALGORLTHMS. Tikhonov and Arsenin4 explore a variety of unstable
inverse problems, but do not see them as problems of inference or decision

at all. Instead they invent various ad hoc algorithms that serve as a sub-
stitute for inversion; their "reqularized" solutions force continuity in a
neighborhood of a known exact solution, but in a way that does not necessarily
make use of any prior information, or even any properties of the operator
A--and for which it is therefore hard to give any convincing ratijonale.

When they take the nature of A into account to the extent of minimizing
a mean square error metric, they have in effect rediscovered the Wiener
filter algorithm. But that too can become unstable in just the problems of
greatest interest. In forecasting a time series with the Wiener prediction
filter, for example, as we approach the limit where the Paley-Wiener criterion
ceases to be satisfied, correlations persist for longer and Tonger times and
formally the time series becomes more and more predictable. Actually, the
prediction algorithm approaches analytic continuation and becomes less and
less stable.

The 1imit is reached just for the physicist's favorite random function,
Planck black-body radiation with power spectrum I(w)<xw3/(ebw—T). The Paley-
Wiener integral Jlog I(w)/(3-+w2)dw then diverges, and the conventional
Wiener theory thus tells us that the time series (say, the x-component of
electric field) is perfectly predictable from its past.

Of course, nobody familiar with the realities would believe this for an
instant. The Wiener prediction algorithm here reduces to analytic continuation,
not only impossible from numerical data, but even physically wrong for reasons
apparent to physicists but neglected in the Wiener theory.

This reminds us that in many inverse problems, as the solution approaches
instability, not only do our conclusions become highly sensitive to smaill
changes in the data; they become equally sensitive to the exact physical
assumptions underlying the theory itself. When the numerical algorithm
becomes shaky, the whole foundation of the theory may also become shaky and
a direct mathematical inversion, even if achieved, could be more misleading
than usefutl. '

Thus in a variety of real problems a different kind of philcsophy and
rationale is needed. Unique deductively obtained results (i.e., direct
mathematical inversion)being impossible, we must set our sights on some

other goal, perhaps more modest but attainable.

3. THE ROLE OF PROBABILITY THEORY. It appears to us that the reason for this
neglect of inference/decision theory methods in dealing with il1-posed problems
Ties in the attitude toward probability theory itself that is instilled by most
current pedagogy. As currently taught, probability theory does not seem
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applicable unless a problem has some evident "element of randomness". Even
then, thg conventional “frequentist” interpretation places strong restrictions
on the allowable forms of its application.

This was stressed by L. J. Savage5 who noted that on the conventional view
probabilities may be assigned only to “random variables® and not to hypotheses
or parameters; and evidence as to the magnitude of a probability is to be
obtained "by observation of some repetitions of the event, and from no other
source whatsoever." But this means that (a) we are prohibited from using
probability theory for inference about the very things about which we are
most interested; and (b) we are prohibited from making use of any prior
knowledge we might have--however cogent--if it does not happen to consist
of frequency data.

As Savage and others have noted, such a program is almost never workable
in problems of the real world and nobody can really adhere to it; yet it
continues to be taught in most statistics courses.

However, we view probability theéry, as did Good,6 Savages, Jeffreys,7
de Finetti]}and many others, as basically a set of normative rules for con-
ducting inference, with no necessary connection with the notion of "random
variables". As we have expounded elsewhere,9 the usual equations of
probability theory are uniquely determined, as rules for inference, by some
very elementary desiderata of consistency that make no reference to random
experiments.

This broader view (actually, the original view of Jacob Bernoulli) is not
in conflict with the conventional interpretation of probability as frequency
in a random experiment; rather, the latter is included as a special case of
probabilistic inference, for certain kinds of propositions or prior informa-
tion (indeed, just the kind that the “frequentist" would want before using
probability theory at all). But unlike the frequentist we consider it
Tegitimate to assign probabilities to any clearly stated proposition; in
the special case that it happens to be a proposition about frequencies, then
the usual connections between probability and frequency are found to appear
automatically, as a consequence of our theory. B8ernoulli's "weak law of
large numbers" was only the first of many-such connections; another important
one is contained in the famous de Finetti8 exchangeability theorem.

We hope to show here that this reinterpretation of probability theory can
convert an ill-posed problem of deductive reasoning into a well-posed problem
of inference. Indeed, on the viewpoint advocated here, Bertrand's original
"i11-posed" problem proves to be well-posed after all, with a unigue solution
that was conjectured by Borel and has been verified experimenta]]y.]o

In a sense, the following considerations might be called pre-mathematical
rather than mathematical. At least in the applications we have studied, once
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a definition q]gorithm has been decided upon, realizing it explicitly tends to
be straightforward. The difficulties that still hold up progress involve
rather the preliminary rationale by which one decides which specific algorithm
we should seek. That is the problem we address here.

4. A SIMPLE UNSTABLE PROBLEM. A proposal of Wolf and Mehta '® to measure
fluctuations in light intensity from data on fluctuations in the counting
rate of the photcelectrons ejected by the 1ight, gives us an excellent example
of a problem of this type. It is formally well-posed and mathematically quite
simple; but nevertheless exhibits almost all of the practical difficulties
noted in the various more complicated inversion problems described at this
Symposium. So let us see how to deal with it by inference rather than in-
version.

The variable 4 is the "light intensity" in units such that given A, the
conditional probabiiity of observing n ejected photoelectrons in some nominal
time interval, say a microsecond, is the Poisson distribution:

p(n|r) = exp(-20"/nl | (1)

N

(More explicitly, » =qE/hv, where v=Tight frequency, E = 1ight energy incident
on the photocathode during that microsecond, and g =quantum efficiency).

But A fluctuates from one microsecond to ancther according to some proba-
bility distribution P(~), and so the probability distribution for observed
photoelectrons is a mixture of Poisson distributions:

pin) =(J::D(HM)P(K)<1% : (2)

Wolf and Mehta note that this integral equation can be inverted, yielding the
formal solution

P(4) = lf ds e L (1+4s)" p(n) (3)
- n=0

and it seems at first glance natural to conclude, with them, that by use of (3)

we can determine P(>) from experimental measurements of the distribution of

observed counts n.

But anyone who tries to do this using for p(n) the observed counting dis-
tribution will discover three difficulties with the formal solution:

(A) With any finite amount of data there will be some N= Moy the maximum
number of photoelectrons observed in any microsecond. The sum in (3) is then a
polynomial of degree N, and we obtain the startiing conclusion that P(i) is a
sum of derivatives of deita-functions:

N

PLA) = ) ané(n)()\) : (4)
n=0
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Evidently, in order for this procedure to yield any acceptable distribution a£
all Jife., a P(A) that is non-negative, normalized, and zero for A <0), the raw
data must be extrapolated to n+< in a way that makes the sum in (3) a rather
special, well-behaved analytic function of s. But the resulting P(A) will
depend, not only on our data, but on how this extrapolation is carried out,
and the statement of the problem does not seem to provide any criterion for
preferring one extrapolation over another. This is an example where massaging
of the data, guided by some of that expert prior information, is necessary.

(B) Even if we had an infinite amount of data, thus avoiding the extra-
polation problem, we would not in general get an acceptable P(A), because the
algorithm (3) has an unacceptable instability. A small change in the data,
for example, Py ™ Py + 0.007, Py > Py - 0.001, would make an unbounded change
in the right-hand side of (3). Common sense tells us that our conclusions
ought to depend continuously on our data.

(C) Finally, we need to distinguish between the theoretically assigned
probability Ph and the empirically measured frequency fn' From the standpoint
of frequentist probability theory, the observed fn is equal to the “true" P
plus some “"random error” e, We would prefer to verbalize this a little
differently, but the pragmatic result is the same: common sense tells us
that, with incomplete data of finite accuracy, P(*) cannot be recovered with
deductive certainty and perfect accuracy. We can make only rather crude
estimates, and the accuracy of the estimate surely must depend on the amount
of data we have. Yet the proposed solution (3) by inversion makes no reference
at all to the amount of data or the accuracy of the result!

These same difficulties infect most of the inverse problems discussed at
this Symposium and by Tikhonov and Arsenin. That these difficulties exist is,
of course, well recognized; that their resolution by inference rather than
inversion also exists, is our main message.

5. INFERENCE. It is clearly asking too much to expect that a finite amount
of noisy data can be determine a full continuous function P(A} without further
restrictions; and so we seek solutions only within some prescribed class of
conceivable functions P(A|8), the different functions of the class being
characterized by a parameter ©, which may be muitidimensional. We then ask
of the data only that they provide us with some "best" estimate of 8, and a
statement about the reliability of the estimate. The particular class of
functions considered would be chosen on the basis of some of that "expert
prior information® about what kind of distributions are likely, given what
one knows about the source of the light.

Fortunately, in the present problem little expertise is needed to see that,
for most 1ight sources the electric field E(x,t) is a sum of an enormous number
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of small and ngarly independent contributions {emission from individual atoms),
and so by the Central Limit Theorem we expect a Gaussian distribution for E,
therefore an exponential distribution for A {which is essentially a space-time
average of E2) if the observation time is short compared to the coherence time.

An estimate of 8 should, of course, be based on all the available evidence,
and not just the evidence of one experiment or measurement. The same problem
was faced by Laplace in the 18'th Century, as he sought to combine astronomical
data from various sources into a single "best" estimate of some parameter, such
as the mass of Saturn, appearing in the equations of celestial mechanics. He
showed that probability theory can often tell us, uniquely, how evidence from
different sources is to be combined into a final estimate, and what accuracy
we are entitled to claim for that estimate.

In Laplace’s problems, the final algorithm usually turned out to be
weighted least squares. Unfortunately, then as now there was a tendency
to confuse the algorithm with the method. In the nineteenth Century, losing
sight of Laplace's rationale, "Least Squares" came to be considered a principle
in its own right, to be applied indiscriminately in all problems whether or not
it could be justified by the principles of probability theory. To avoid
repeating past mistakes, it is important that in each new problem we re-examine
the probabilistic basis for our algorithm.

In our present problem, the experiment consists of K repetitions of the
measurement of n; denote the data obtained by D = {n1,n2,...,nK}, and any
additional prior information (which might be the result of previcus experiments
or a theoretical analysis) by [ and let T stand for the statement: "& is in
the interval (8,6+d6)". The evidence I contains some information about 3,
described by a probability p(T|{I). From the product rule of probability theory:
P(T,D[1) = p(T|D,I)p(D]1) =p(D|T,1)p(T|I) we have, if p(DI1)>0 (i.e., the data
set is a possible one},

p(Ti0.1) = p(r|1) BSTL (5)

Then, indicating a probability density f(8]X) of 6 conditional on any informa-
tion X according to p(T|X) = f(8[X)d2, the final probability distribution for
8, given the prior information and the data, will have the form

»1) (6)

[we]

f(8]D,1) = AFf(¢]1)p(D]

where A is a normalizing constant, independent of 8. The evidence contained in
the experimental data D thus resides entirely in the 8 dependence of the factor
p(D|6,X); all other details of the data are irrelevant for the estimation of 6.
Usually, I will be relevant to the probability of obtaining the data D only
through its relevance to the value of &, in which case it is superfluous in
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this factor: p{Dfe,1) = p(Dfa).

For example, suppose we seek the unknown distribution P(X) in the afore-
mentioned class of exponential densities P(A{8) = g1 exp(-1/8) corresponding
to Gaussian distributions for the field components. 6 is then the average
tight intensity; given 8, the probability of obtaining exactly n counts in
any one measurement is

o(nfo) = [ plnlajplalelan = s (140)""! (7)
0
and if successive measurements are statistically independent (i.e., separated
by a time long compared to the correlation time of the light), the probability
of obtaining'the entire run of data D is a product of K such factors:

N

7 8
(]+9)N+K (8)

p(Dlg) =

where N = Zi n. is the total number of counts observed.

If the additional evidence I yields a probability density f(8|1) which
varies little in the range of & where (8) is appreciably large, then [ is
very uninformative compared to the evidence of the experiment (i.e., the
experiment is well-designed); and from (6) the final probability density
f(8]D,1) will be, for all practical purposes, proportional to (8) in its
dependence on 9.

However, a slight formal refinement may be achieved by considering the
prior probability density f(6|I) a 1ittle more carefully; and if we have very
little data the difference might be noticeable. Suppose we wish to express
“complete prior ignorance" of the value of &; what function f(6]|I) does this?
Stated in this way, the question has been rightly rejected in the past as
i11-posed; the phrase "complete ignorance” is too vague to define any specific
mathematical problem. But in fact we are not completely ignorant; if we know
the distribution P(A|8) we can hardly be ignorant of the fact that & is a
scale parameter.

Presumably, by ignorance of the absolute scale of the problem one ought to
mean a state of knowledge that is not changed by a small change in that absolute
scale; just as ignorance of one's location is a state of knowledge that is not
changed by a small change in that location. One may, therefore, view
“ignorance" as an invariance property; the probability density that is
invariant under the group of scale changes (6 - 8' = ag8) satisfies the
functional equation f(8) = af(ad); i.e., it is f(6]I) = (1/8). /

Indeed, this prior was advocated long ago, on partly intuitive grounds,
by Jeffreys.7 The group invariance argument]3 is at least a strong heuristic
principle taking a step toward a more rigorous derivation, but it still depends
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on intuition to the extent that the user must choose the group. We have now
taken anothew step in proving, via the integral equations of marginalization
theory,}4 that in a problem with two parameters (8,2) with & a scale parameter,
the Jeffreys prior (1/68) is uniquely determined as the only prior that is
“compietely uninformative about «" without further qualifications.

Because of this convergence of quite different 1ines of argument, and the
good pragmatic success we have had in using it for many years, we shall advocate
using the Jeffreys prior here if we wish to express a completely open prior
opinicn, that leaves the entire decision to the evidence of the data (thus
achieving R. A. Fisher's goal of "letting the data speak for themselves").

The fact that the Jeffreys prior is improper (i.e., not normalizable) could
be dealt with, if needed, by approaching it as the Timit of a sequence of proper
priors, as we have shown elsewhere. ¢ However, in the present problem the
integrals converge so well that this is not necessary; our result is the same.

If we do have cogent prior information and relatively little data, then
adopting a different prior distribution which expresses that prior information
may improve the reliability of our estimates. This has been found particularly
in recent work on forecasting economic time sem‘es,]5 where incorporating prior
information about regression coefficients can make a quite noticeable improve-
ment in the forecasts; and in the problem of seasonal adjustment,16 where prior
information about the smoothness of the seasonal component can make a major
change in our estimate of the irregular component.

With the Jeffreys prior, (6) and (8) yield the posterior density

gN-1
+6)N+K ’

0 <f < (9)

and it is usually sufficient to express our conclusions in the form of a few
moments or percentiles of this distribution. To find the percentiles, note
that (9) is a Beta distribution in the variable x =e/(1+8}, so that the
identity of the incomplete Beta function and the incomplete Binomial sum17
gives the cumulative distribution

(-1
) N

o(5enl0,1) = ) LHET) L (10)
r=0 )

in a form for computer evaluation (the "Snedecor F-tables" of the statistician
could be used also, for the particular percentiles tabulated).
The moments of the distribution (9) are found to be

nm'D,” - (Nzrl\l;gigi ) , -N < m< K , (]1)
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The estimate of 6 which minimizes the expected square of the error (our “value
[ 3

Jjudgment” for this case) is then t = E(8{D,I) = N/{K-1), and the variance of

(9) is

% = t{t+1)/(K-2) (12)
The (mean) * (standard deviation)

(B)eSt =t +g (13)
is then a reasonable statement of our "best" estimate and its accuracy. For
example, if we wish to determine 6 to :1% accuracy for a light source that
gives a counting rate of about t counts/microsecond, we shall require a
4 (-1 +t-1

to common sense, but of which the attempted inversion (3) gives no hint. As

number of observations K > 10 ), @ result which is hardly surprising
(N,K) » =, (9) goes into a normal distribution: B~ N(t,o).

This example shows how the inference (9) can answer, successfully, a more
modest question than the direct inversion (3) tried to answer, unsuccessfully.
Our conclusions are numerically stable, and the way in which the accuracy of
those conclusions depends on the amount of data is now exhibited explicitly
in (12).

Note, however, that in answering a more modest question, inference is not
giving us any less information than inversion; for when a reliable inversion
is possible, the Tikelihood factor p(D|®,I) in (6) develops a single sharp
peak and inference will reduce to inversion. An unstable inversion, with
the superficial appearance of giving more information, is actually giving
false/unreliable information without warning us of that fact. Inference
gives us those conclusions that are actually justified by the prior information
and data, and it tells us, by the probable error o, how reliable our estimates
are. It may also take into account prior information that inversion ignores.

We note how the appearance of an unstable geophysical inverse problem
might be changed by a similar approach. Suppose we wish to infer some sub-
surface property Q(z) (density, conductivity, elastic constants) from surface
data D (gravimetric, electromagnetic, seismic). The data depend on Q(z) through
some relation expressing physical law (potential theory, electromagnetic or
accustical wave equations, etc.); abstractly,

D= AQ(z) + N (14)

where A is some operator, presumed known and N is whatever "noise'"--unavoidable,
uncontrollable, and unknown--piaces the ultimate limit on the accuracy of D.

The trouble is that the effect of Q{z) on D falls off, often exponentially
fast, with z. Any attempt to reconstruct Q(z) by direct inversion of (14)
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must then be;omé increasingly unstable and unreliable with depth. An inversion
algorithm may be at least usable--although with unknown accuracy--up to a
certain depth, beyond which it fails entirely.

[f the problem were treated by inference the final result would be, not
a single value for each depth z, but a family of probability densities para-
meterized by z:

F Q) = £(Qlz,D,1) = f(Q|z,1)p(D{Q,z,I) (15)

Z

such that FZ(Q)dQ is the probability that, at depth z, Q lties in (Q,Q+dQ).
As we go to greater depths and the estimates become, necessarily, less
accurate, FZ(Q) would indicate this by becoming broader. At depths where
the data can give no information, FZ(Q) would reduce to the prior density
f{Qlz,I). At depth z, our estimate will have the form

(Q) = t{z) *a(z) (16)

in which t(z) is our "best" estimate, that inversion had tried to give, and
o{z) indicates how reliable that estimate is. As z increases, o{z) would
increase from values small enough to make the estimate t(z) useful, to values
so large that the data have told us nothing beyond whatever prior information
we had. But the algorithm is stable, the increase is smooth and continuous,
and there is no point at which the method suddenly fails.

{t appears to us that conclusions stated in the format (15), (16) would
indicate, more usefully and more honestly, what the data actually have to
tell us about the question being asked.

6. GENERALIZED INVERSE PROBLEMS. In another class of problems arising con-
stantly in applications, the trouble is not merely that the inversion is
unstable; it is in principle impossible because the operator A is singular.
Here too there have been unceasing efforts to resolve the ambiguity by
inventing ad hoc algorithms that imitate inversion, but take no note of the
principles of inference.

For example, given values of a function

y(t) =fduv<w>e"“’t (17)

over only a part of its support, estimate its fourier transform Y{u). The
most obvious algorithm (take the transform of the data) gives us the fourier
transform YT(w) of a function yT(t) that is truncated to zero outside the
measured region. In almost all real cases this would be arbitrary and

unrealistic, and in some cases it would be unacceptable because it contradicts



162 E. T. JAYNES

our prior information. Thus if y(t) is the autocorrelation function of a time
serfes, Y(w) is its power spectrum, by definition non-negative. But as Burg]7
has emphasized, YT(w) is not in general non-negative.

[t is clear that there is a fundamental ambiguity here, since the data
cannot distinguish between two estimates Y](m), Yz(w) whose fourier transforms
y1(t), yz(t) differ only outside the measured region. For a choice between
them, one must appeal to prior information and/or value judgments.

To formulate problems of this type in a general, abstract way, there is an

unknown “state of Nature" x, which for brevity and with a view to image recon-

struction, we shall call "the scene". It might be a number, a vector, or a
function. Intuitively (and even this step may require some of that creative
imagination) we think of x as belonging to some set X = {x1 ...xn} of possible
scenes.

We would 1ike to know the true scene x, but our information is incomplete.
Instead, we know only the "blurred scene"

y = Ax (18)

where A is an operator, supposed known but noninvertible. That is, we cannot
recover x in the manner x = A_1y because the data y cannot distinguish between
two scenes x, x' that satisfy the "homogeneous equation" Ax - Ax' = 0 (a true
homogeneous equation if A is linear). The best we can do is to make an
inference, in which we choose some estimate of x from our data:

X = Ry (19)

where R is a "resolvent" operator to be chosen. The conceptually difficult
pre-mathematical problem is: by what criterion do we choose R?

It appears that deductive logic is able to give us only one restriction on
R. Given the data (18), we know at least that x must lie in the class C (subset
of X) of scenes X that satisfy y = Axi. Thus for all possible x we should
have y = Ax = AX = ARy = ARAx, or

ARA = A (20)

and so R, in order not to conflict with deductive reasoning, must be a
generalized inverse operator. Stated differently, as seen through the
"distorting window" A, the estimated scene X should be indistinguishable
from the true scene x.

A problem with this simple Togical structure, in which A is considered
known exactly, and the data are noiseless, will be called a pure generalized

inverse problem. To have the data contaminated with noise or A unknown makes
the problem "impure" in our terminology.
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Even im the seemingly straightforward pure problem, there have been
conceptual difficulties so serious that the logically necessary condition
(20) is not always recognized; the literature of spectrum analysis, image
reconstruction, and quality control contains various proposed algorithms
that violate it.

Then what prior information and value judgments are available to guide
us to one specific choice within C? No general answer can be given once
and forall; basically, this must be pondered separately for each new problem,
and the following suggestions surely will not be applicable in all cases.

Yet there is a large class of problems in which a single "new" principle

and a rather well-developed formalism resolve this ambiguity, in a way

that proves to have demonstrable optimality properties and pragmatic success.
With better understanding of its rationa1e18 this class is growing, and its
ultimate limits are not yet in sight.

In many problems, it develops that we actually have some highly cogent
prior information of which most of us are hardly consciously aware, because--as
our quotation from L. J. Savage shows--conventional probability theory adjures
us to ignore it. But this adjuration is just the reason why "orthodox"
statistics is incapable of dealing with pure generalized inverse problems.

Although, as we have shown e]seWere,g’]8

the following rationale applies

without essential change to many different kinds of problems, it will suffice

here to consider a finite, discrete, linear version which amounts to inverting
a singular matrix. Our general "scene" x is then represented by a set of

"true but unknown" numbers {x xn} which we wish to estimate, the general

R
"data" y by a smaller set {yI ...ym} of observations, m<n, the general

operator A by a known (mxn) matrix:

n
yj = g;] Aji X, , 1 <j<m . (21)

The resolvent operater R might, conceivably, be an {(nxm} matrix; but this is
not required. Indeed, if we restrict R to be linear we shall hardly get past
the Wiener filter type of algorithm. We advocate below a highly nonlinear R,
whose performance could not be matched by any linear operation.

At present, then, there are an infinite number of different operators R,
linear and nonlinear, which all satisfy the necessary condition (20), and
therefore yield estimates {Q] ...Qn} in the class C of possible scenes.

If we have no prior information about the phenomenon being observed,
which would make some scenes in C inherently more likely than others, then
it appears to us that the ambiguity is fundamentally irremediable and there
can be no justification for any algorithm that picks out only one scene. In
that case, the only honest "solution" to the problem would seem to be:
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specify the entire class C, which contains (n-m) arbitrary parameters.

Suppose, however, that we know (or wish to adopt as a working hypothesis}
that Nature is generating the scene x by N repetitions of some process (call
it a "random experiment" if you like) which can, at each trial, produce any
one of n results {r]... rn}. In image reconstruction we might think of the
scene as produced by distributing N little "elements of luminance" over the
n pixels of the scene, such that the i'th pixel receives a total of Ni elements,
and taking X, as the fraction Xy = Ni/N of total tuminance in the i'th pixel.
[t is much like tossing N pennies onto a floor whose square tiles are numbered
1 to n, and noting how many land on the ith tile.

But this picture of the mechanism constitutes relevant prior information;
there are a priori nN different conceivable things that could happen in this
sequence of tosses, and of these a given scene x could be realized in a number

" of ways given by the multiplicity factor

N!

W(scene) = — , (22)
(Nx]).... (an).
For large N the Stirling approximation gives asymptotically
1 -
T Tog W(scene}v - E: X log X5 = H(scene} , (23)

3
the Shannon entropy of that scene. For all practical purposes, then, we may
take the muitiplticity of a scene as

W(scene) = eNH(SCEHE) ; (24)

With this observation, the ambiguity of our inversion problem is resolved.
Scenes of higher entropy are inherently more 1ikely because they have higher
multiplicity; i.e., they can be realized by Nature in more ways. The scene
which has maximum entropy subject to the constraints (21) is the one with the
greatest multiplicity of all those in the class C of scenes permitted by our
data; and so unless we have further>prior information not yet brought to bear
on the problem, it would seem irrational to choose any estimate other than the
scene of maximum entropy.

There remain the questions of uniqueness and sharpness of this result.

For most purposes uniqueness is disposed of by noting that the set {Sh:H>h}

of scenes with entropy greater than h is, by well-known properties of entropy,
strictly convex. A sufficient (stronger than necessary) condition for unique-
ness of the maximum-entropy point is then that the set C picked out by our
constraints be convex, as is evidently the case for the constraints (21).
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Our solution point is then a point of tangency of the set C with one of the
sets Sh!

The sharpness of the result is indicated by the Entropy Concentration
Theorem]8 presented recently in some detail; suffice it to say here that if
we count the scenes by their multiplicities, then not only is the scene of
maximum entropy favored over all others, for large N the overwhelming majority
of all possible scenes have entropy very close to the maximum. For example,
asymptotically, 99% of all scenes in class C have entropy in the range

H - 4 < H(scene) < H

max (25)

max

where H = xi(0.0])/2N, and xi(q) is the critical Chi-squared statistic at the

100q%significance level, for k = n-m-1 degrees of freedom.
The analytical solution of this maximization problem is well known; define
the partition function

CZ0q ) :%:exp(—A1A]i...—AmAmi) . (26)

Then the maximum-entropy scene is given by

7T exp(AgAL s bR (27)
in which the A's (Lagrange multipliers in the constrained maximization) are
chosen to fit the data (27).

To give further details here would duplicate what is in the presentations
of J. Shore and J. Skilling at this Symposium. Another recent application to
crystallographic inversion is given by Wilkins, et a].]g We close with the
observation that (26) is nothing but a generalized Gibbsian canonical distri-
bution, which has been the basis of Statistical Mechanics for some 60 years.
From the inference point of view, therefore, Statistical Mechanics was,
historically, the first example of a pure generalized inverse problem in
which the ambiguity was resolved by entropy maximization. There was no
necessary connection with thermodynamics; but unfortunately, the generality
of Gibbs' method was concealed by attempts to put frequentist interpretations
on it, and it is only in very recent years that we have realized how much we
still had to learn from Gibbs. The overwhelming “preference of Nature" for
scenes of high entropy indicated by the Entropy Concentration Theorem is just
what we have been calling the "Second Law of Thermodynamics” for a Century.
The maximum-entropy methods expounded at this Symposium are only new applica-
tions of the Second law, generalized beyond its original domain.
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