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Abstract

Semi-inclusive deep inelastic scattering (SIDIS) experiments may be used

to identify the flavor of the quark that participates in the scattering process.

Semi-inclusive scattering is defined as an electron scattering experiment in

which the scattered electron and one hadron are detected in the final state. Ex-

periments at Jefferson Lab have used longitudinally polarized electron beams

to probe longitudinally polarized Hydrogen (15NH3) and Deuterium (15ND3)

targets to investigate the quark’s contribution to the properties of a nucleon.

This thesis reports a measurement of SIDIS pion asymmetries using the CEBAF

Large Acceptance Spectrometer (CLAS) at Thomas Jefferson National Labo-

ratory. The incident electron’s energy was 4.2 GeV and covered a kinematic

region where the struck quark carries at least 30% of the nucleons total mo-

mentum (xB ≥ 0.3). The electrons scatter mostly from valence quarks in this

kinematic region allowing measurements which are less sensitive to the ocean

of quark-antiquark pairs that are also inside a nucleon.

xvi



Chapter 1

Theory

Understanding the spin structure of a nucleon remains a major challenge for

hadronic physics. The parton model predicted that quarks carry about (67 ±

7)% of the total nucleon spin. Experiments performed at the European Orga-

nization for Nuclear Research (CERN) by the European Muon Collaboration

(EMC) found out that only (21.06 ± 7)% of the nucleon spin is carried by the

quarks [1] [2]. Other experiments at CERN (spin muon collaboration (SMC))

and SLAC (E142 and E143) did not agree with the naive Quark Parton Model

[3]. This reduction is assumed to be caused by a negatively polarized quark sea

at low momentum fraction x, which is not considered in quark models. The

complete picture of the nucleon spin can be obtained by taking into account

the spin contributions from the gluons and sea quarks and in addition to the

quark orbital momentum. So the spin of the nucleon can be written as the sum

of the following terms [4]:

1

2
=

1

2
∆Σ + ∆G + Lz, (1.1)

where ∆Σ = ∆u + ∆d + ∆s is the spin contribution from the quarks, ∆G

from the gluons and Lz is the orbital angular momentum contribution from the

partons (quarks). The spin contribution from each type of quark to the total

1



CHAPTER 1. THEORY

nucleon spin is from ref[3]:

∆u = 0.83 ± 0.03 (1.2)

∆d = −0.43 ± 0.03 (1.3)

∆s = 0.10 ± 0.03. (1.4)

1.1 The Standard Model

Matter is composed of two types of elementary particles, quarks and leptons,

which form composite particles by exchanging bosons, yet another type of el-

ementary particle. The Standard Model of particle physics, a Quantum Field

Theory, was developed between 1970 and 1973. The Standard Model describes

all of the known elementary particle interactions except gravity. It is the collec-

tion of the following related theories: quantum electrodynamics, the Glashow-

Weinberg-Salam theory of electroweak processes, and quantum chromodynam-

ics.

The Standard Model describes a nucleon, a neutron or proton, as a particle

composed of three constituent quarks. Quarks are spin 1/2 particles with frac-

tional charge (eq) and come in the flavors of strange (s), charm (c), beauty (b)

and top (t) in addition to up (u) and down (d). Quarks have Baryon quantum

number (B′) of 1/3. The quantum numbers of quarks with their antiparticles

are given in Table 1.1.

2



CHAPTER 1. THEORY

Quark Spin eq I3 B′ C S T B Antiquark
u(up) 1/2 +2/3 +1/2 +1/3 0 0 0 0 ū

d(down) 1/2 -1/3 -1/2 +1/3 0 0 0 0 d̄
c(charm) 1/2 +2/3 0 +1/3 +1 0 0 0 c̄
s(strange) 1/2 -1/3 0 +1/3 0 -1 0 0 s̄

t(top) 1/2 +2/3 0 +1/3 0 0 +1 0 t̄
b(bottom) 1/2 -1/3 0 +1/3 0 0 0 -1 b̄

Table 1.1: Quarks in the Quark Model with their quantum numbers and electric
charge in units of electron.

1.2 The Quark Parton Model

In 1964 Gell-Mann and Zweig suggested that a proton was composed of point

like particles in an effort to explain the resonance spectra observed by exper-

iments performed in the 1950’s [5]. These point like particles, referred to as

partons and later quarks, have not been observed as free particles and are con-

sidered to be the building blocks of baryons and mesons. The model assumes

that partons are identified according to a quantum number called flavor. For

example: up (u), down (d) and strange (s) and their antiparticles. This set

of flavor quantum numbers can be used within the context of group theory’s

SU(3) representation to construct isospin wave functions for the nucleon [6].

The constituent quark model describes a nucleon as a combination of three

quarks. According to the quark model, two of the three quarks in a proton are

labeled as having a flavor “up” and the remaining quark a flavor “down”. The

two up quarks have fractional charge +2
3e while the down quark has a charge

−1
3e. All quarks are spin 1

2 particles. In the quark model, each quark carries one

third of the nucleon mass. Since the late 1960’s, inelastic scattering experiments

have been used to probe a nucleon’s excited states. The experiments suggested

3
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that the charge of the nucleon is distributed among pointlike constituents of the

nucleon. The experiments at the Stanford Linear Accelerator Center (SLAC)

used high 19.5 GeV energy electrons Coulomb scattered by nucleons through

the exchange of a virtual photon [7]. The spacial resolution (d) available using

the electron probe may be written in terms of the exchanged virtual photon’s

four-momentum, Q, such that the electron probe’s ability to resolve the con-

tituents of a proton increases as the four momentuum Q increased according

to

d =
!c

Q
=

0.2 GeV · fm

Q
, (1.5)

and

Q2 = 4EE ′ sin2 θ

2
, (1.6)

where E and E ′ are the initial and final energy of the lepton and θ is the polar

angle of the scattered electron.

The electron scattering data taken during the SLAC experiments revealed a

scaling behavior, which was later referred to as Bjorken scaling. The inelas-

tic cross section was anticipated to fall sharply with Q2 like the elastic cross

section. However, the observed limited dependence on Q2 suggested that the

nucleons constituents are pointlike dimensionless scattering centers.

Independently, Richard Feynman introduced the Quark Parton Model, where

the nucleons are constructed from three point like constituents, called partons.

Shortly afterwards, it was discovered that partons and quarks are the same

particles. In the QPM, the mass of the quark is much smaller than in the naive

Quark Model. In the parton model, the inelastic electron nucleon interaction

via a virtual photon is understood as an incoherent elastic scattering processes

4
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between the electron and the constituents of the target nucleon. In other words,

a single interaction does not happen with the nucleon as a whole, but with ex-

actly one of its constituents [7]. In addition, two categories of quarks were

introduced, “sea” and “valence” quarks. The macroscopic properties of the par-

ticle are determined by its valence quarks. On the other hand, the so called sea

quarks, virtual quarks and antiquarks, are constantly emitted and absorbed by

the vacuum.

The Quark Parton Model predictions are in agreement with the experimental

results. One of those predictions is the magnetic moment of baryons. For ex-

ample, the magnetic moment of the proton should be the sum of the magnetic

moments of the constituent quarks according to the naive Quark Model [9] :

e

2mp
µp = Σi=1,2,3 < P 1

2
|eq(i)σz(i)

2mp(i)
|P 1

2
> . (1.7)

Assuming that the masses of light non-strange quarks are just one third of the

total nucleon mass md = mu = mp

3 = mn
3 and expressing the magnetic moment

in units of e
2mp

we get the following result for the proton magnetic moment

µp = 3, which agrees with experimental findings. The Quark Parton Model

predictions of magnetic moments of the other baryons are compared with the

experimental results below in Table 1.2. As it can be observed, it is in agreement

with experiment within an accuracy of 20− 25%.

The Quark Parton Model has successfully explained the baryon mass spectrum.

The baryon masses can be expressed in the quark model using the de Rujula-

5
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Particle The Quark Model Prediction Experimental Result
p 3 2.79
n -2 -1.91
Λ -0.5 -0.61
Σ+ 2.84 2.46
Σ− -1.16 -1.16 ± 0.03
Ξ0 -1.33 -1.25 ± 0.01
Ξ− -0.33 -0.65 ±0.04

Table 1.2: Magnetic moment of baryons in units of nuclear magnetons ( e
2mp

)

[9].

Georgi-Glashow approach:

mB = Σimq(i) + bΣi#=j
σ(i)σ(j)

mq(i)mq(j)
. (1.8)

The difference between the actual experimental results and the predictions is

on the order of 5 - 6 MeV. However, a similar formula for meson masses fails.

The difference between the experiment and calculation in the meson case is

approximately 100 MeV. This can be explained by calculating the average mass

of the quark in a baryon and meson (Table 1.3) [9] :

< mq >M=
1

2
(
1

4
mπ +

3

4
mp) = 303MeV (1.9)

< mq >B=
1

3
(
1

2
mN +

1

2
m∆) = 363MeV. (1.10)

6
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Particle Prediction (MeV/c2) Experiment (MeV/c2)
N 930 940 ± 2
∆ 1230 1232 ± 2
Σ 1178 1193 ± 5
Λ 1110 1116 ± 1
Σ∗ 1377 1385 ± 4
Ξ 1329 1318 ± 4
Ξ∗ 1529 1533 ± 4
Ω 1675 1672 ±1

Table 1.3: Baryon mass predictions compared with experimental findings [9]
[10].

1.3 Lattice QCD

Although the naive Quark Model successfully described several nucleon proper-

ties, it was not a fundamental theory, opening the doorway for the development

of new field theory called Quantum Chromodynamics. In the Quark Model, the

particles of the baryon decuplet are symmetric in spin and flavor, so that the

wave functions that describe the fermions are fully symmetric and identical,

which is a violation of the Pauli principle. As a solution, Quantum Chromo-

dynamics suggested that quarks carry an additional degree of freedom, ”color”.

Quarks have three degrees of freedom: spin, flavor and color. There are three

states of color: red, green and blue. The Quark Model has color.

Deep inelastic lepton nucleon scattering experiments give us an opportunity to

measure the momentum weighted probability density function of partons in the

proton and neutron. The fraction of the nucleon momentum carried by quarks

can be calculated by integrating the probability density function (F2):

18

5

∫

0

1

dxF2
eN(x) =

∫

0

1

dx[u(x) + d(x) + d(x) + u(x)]. (1.11)

7
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The last expression shows that the quarks inside the nucleon carry about 50%

of the total four momentum. It leads to the question, are quarks the only par-

ticles inside the nucleon? In addition to quarks and antiquarks, there are other

components in the nucleon. They can not be seen by using an electromagnetic

(electron) nor a weak (neutrino) probe, because they do not carry weak or elec-

tric charge.

The scaling behavior was explained by the assumption that a nucleon is built

from non-interacting pointlike quarks and antiquarks. However, the quarks

were found to be charged particles, which implies that there should be at least

an electromagnetic interaction between the nucleon constituents. The spacial

and temporal resolution of the target nucleon’s probe can be increased with

high four-momentum transferred squared Q2. Using high Q2 quarks, at low Q2

that are seen as pointlike particles, and will be resolved into more partons in

the nucleon. One can see that inside the nucleon there are more components

then just three charged quarks. Due to the scaling violation, the total four mo-

mentum of the nucleon is divided over more partons, and the average fractional

momentum of each parton will decrease as indicated in Figure 1.1.

It was concluded that a nucleon consists of three main quarks called ”valence”

quarks, which carry the quantum numbers of the nucleon as well as a ”sea” of

quark-antiquark pairs. The interaction between the quark-antiquark pairs is

mediated by gluons. Unlike QED, where the force mediator (photon) doesn’t

carry the charge, in QCD, the gluon has a color charge and can interact with

other gluons. In other words, QCD is a theory where a field quanta is at the

same time a field source. That makes QCD a non-Abelian field theory. QCD
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Fig. 1.1: Scaling violation [7].

allows the following interactions:

q → q + g, (1.12)

g → q + q̄, (1.13)

and

g → g + g. (1.14)

The colors carried by the eight gluons are the following: RB̄, RḠ, BR̄, GR̄,

BḠ, GB̄, (RR̄−GḠ)/
√

2, (RR̄+GḠ−2BB̄)/
√

6. The color is not experimen-

tally observable, only ”colorless”quark-antiquark systems are observed: baryons

9
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(qqq), mesons (qq̄) and antibaryons (q̄q̄q̄).

The confinement of the quark antiquark system can be explained by the fact

that the color force increases when the particle separation increases. As sepa-

ration decreases the force decreases so that the quarks no longer interact. This

phenomenon is referred as an asymptotic freedom. The strong coupling in QCD

is defined to first order as follows [7]:

αs(Q
2) =

1

β0ln(Q2/Λ2
QCD)

(1.15)

β0 =
33− 2nf

12π
. (1.16)

ΛQCD is found experimentally and nf is the number of active quark flavors. At

Q2 ∼ ΛQCD ∼ 200 MeV, αs →∞ quark confinement takes place. Perturbative

QCD is used to describe deep inelastic scattering, because of its capacity to

calculate more than a few non-perturbative quantities within QCD. The two

most important aspects of QCD are confinement and asymptotic freedom. Since

QCD is a quantum field theory, confinement and asymptotic freedom are related

to the running of the coupling constant.

• Confinement states that as the distance between two color charges in-

creases, or the four momentum transferred squared goes to zero, the cou-

pling constant increases. When two color charge constituents move apart,

the interaction between them increases so that color-anticolor pairs are

created from the vacuum. Hadronization describes the process of recom-

bination of the initial color charges to form a colorless object.

• As the distance between quarks goes to zero the interaction between them

10
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goes to zero asymptoticaly. Due to this property, quarks in the nucleon

are free particles. The asymptotic freedom is the cause of the falling of

the coupling constant as the distance between charges decreases, or the

four momentum transferred square goes to infinity.

1.4 Semi-Inclusive Deep Inelastic Scattering

Deep inelastic scattering (DIS) of leptons by nucleons is a powerful experimen-

tal tool for investigating the structure of nucleons. In these experiments, both

charged (electrons, muons) and neutral (neutrinos) leptons are used with their

antiparticles. In deep inelastic scattering, the scattering occurs on a single

nucleon or on bound protons and neutrons inside the nucleus. At large momen-

tum transfer the inelastic scattering is the incoherent sum of elastic scattering

off the nucleon constituents, which are assumed to be dimensionless pointlike

quarks. In the Constituent Quark Model (CQM) the constituents of the hadron

are up and down quarks, whereas in Quantum Chromodynamics the nucleon

is a composition of quarks, antiquarks and gluons. In inclusive deep inelastic

scattering (IDIS), only the lepton is detected in the final state, whereas in the

case of semi-inclusive deep inelatic scattering (SIDIS), a hadron is detected in

coincidence with the scattered lepton. Both physics processes can be charac-

terized by a differential cross section. The cross section is proportional to the

event rate. The differential cross section for inclusive deep inelastic scattering

can be written in terms of a lepton and a hadronic tensor [8] :

d2σ

dxdQ2
∝ LµνW

µν , (1.17)
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where

Lµν(k, k′) = 2(kµk
′
ν + k′

µkν −
1

2
Q2gµν), (1.18)

and

W µν = −W1

(
gνµ +

1

Q2
qµqν

)
+

1

M2
W2

(
pµ +

p · q
Q2

qµ

) (
pν +

p · q
Q2

qν

)
. (1.19)

The leptonic tensor Lµν describes the coupling between the scattering lepton

and the virtual photon. The hadronic tensor W µν describes the absorption of

the virtual photon by the target nucleon. The hadronic tensor contains infor-

mation about the nucleon structure. It can be written in terms of structure

functions using symmetry arguments and conservation laws. However, the in-

formation about the spin distribution inside the nucleon is contained in the

asymmetric part of the hadronic tensor, which can be obtained by taking the

difference of the cross sections with opposite spin states of the initial lepton.

Polarized quark distribution functions can be extracted from SIDIS measure-

ments using the quark flavor tagging method and exclude the quark flavor

assumptions used in inclusive DIS measurements. In SIDIS, the double spin

asymmetry can be expressed in terms of the cross sections of final state hadrons

produced in the experiment [11]:

Ah
1 =

σh
1/2 − σh

3/2

σh
1/2 + σh

3/2

, (1.20)

where σh
1/2(σ

h
3/2) represents the semi-inclusive cross section of type h hadrons

12
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produced in the final state when the spin of the initial lepton beam is antiparallel

(parallel) to the target nucleon spin.

The semi-inclusive cross section can be expressed in terms of quark distribution

functions and fragmentation functions:

d3σh
1/2(3/2)

dxdQ2dz
≈ Σqe

2
qq

+(−)(x, Q2)Dh
q (z, Q2), (1.21)

where q+(−)(x, Q2) is the quark distribution function with spin oriented par-

allel (antiparallel) to the spin of the nucleon and the fragmentation function

Dh
q (z,Q2) is a measure of the probability that a quark of flavor q will fragment

into a hadron of type h.

The measured structure function in inclusive deep inelastic scattering experi-

ments contains the contribution from all the different quark flavors to the total

nucleon momentum and spin, without distinguishing the contribution from the

individual quark flavors. On the other hand, semi-inclusive deep inelastic scat-

tering experiments provide an opportunity to determine the struck quark flavor

by detecting the final state hadron in coincidence with the scattered lepton.

The kinematics of single pion electroproduction in SIDIS can be described by

five variables: the virtual photon four-momentum transfered squared Q2, in-

variant mass of the photon-nucleon system W , the polar θπ
∗ and the azimuthal

angle ϕπ
∗ of the outgoing pion in the center of mass frame, and the scattered

electron azimuthal angle ϕe.

The incoming electron with four momentum k = (E,(k) is scattered from the

target of four momentum (M , (0), where M represents the rest mass of the

13
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Fig. 1.2: Diagram of The Semi-Inclusive Deep Inelastic Scattering [11].

target nucleon. The four momentum of the scattered electron and hadron are

respectively k′ = (E ′, (k′) and ph = (Eh, (ph). Semi-inclusive deep inelastic scat-

tering is depicted in Figure 1.2. The four momentum of the exchanged virtual

photon, through which the SIDIS occurs, is the four momentum lost by the

initial electron q = k − k′. The negative square of the four momenta can be

written as Q2 = −q2|lab = 4EE ′ sin2 θ
2 , where Q2 is greater then zero. The

energy transferred from the scattered electron to the target nucleon, which is

also the energy of the virtual photon, is given by

ν =
p · q
M

= E − E ′|lab. (1.22)
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The Bjorken scaling variable x is defined as

x =
Q2

2p · q =
Q2

2Mν
. (1.23)

The fraction of the virtual photon energy transferred to a hadron, that is de-

tected in the final state in coincidence with the scattered electron, is

z =
p · ph

p · q =
Eh

ν
|lab, (1.24)

where the last kinematic variable is the invariant mass of the scattering process

available to produce the final hadronic state

W 2 = (q + ph)
2 = M2 + 2Mν −Q2. (1.25)

The electron scattering cross section off a nucleon can be written as [8] :

d2σ

dQ2dW 2
=

2πα2M

(s−M2)2Q2

[
2W1(W

2, Q2) + W2(W
2, Q2)

(
(s−M2)(s−W 2 −Q2)

M2Q2
− 1

)]
,

(1.26)

where s is (p + k)2. In the target rest frame it can be expressed in terms of the

initial and final energies of the electron and the electron scattering angle θ:

d2σ

dΩdE ′ =
α2M

8E2Ep sin4 θ
2

[
2W1 sin2 θ

2
+ W2

4E2
p

M2
cos2 θ

2

]
, (1.27)
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k = (E,(k), k = (E
′
, k

′
) 4 - momenta of the initial and fi-

nal state leptons
θ, φ Polar and azimuthal angle of the

scattered lepton
P lab = (M,(0) 4 - momentum of the initial target

nucleon
q = k − k

′
4 - momentum of the virtual pho-
ton

Q2 = −q2lab = 4EE
′
sin2 θ

2 Negative squared 4 - momentum
transfer

ν = Pq
M = E − E

′|lab Energy of the virtual photon

x = Q2

2Pq = Q2

2Mν Bjorken scaling variable

y = Pq
Pk = ν

E |lab Fractional energy of the virtual
photon

W 2 = (P + q)2 = M2 + 2Mν −Q2 Squared invariant mass of the
photon-nucleon system

ph = (Eh, (ph) 4 - momentum of a hadron in the
final state

z = P ·ph

P ·q = Eh
ν |lab Fractional energy of the observed

final state hadron

Table 1.4: Kinematic variables in deep inelastic scattering.

where W1 and W2 are so called structure functions, Ep and E the energy of the

initial proton and electron respectively and θ the polar angle of the scattered

electron. M is the mass of the target, in our case the nucleon.

As mentioned above, the DIS interaction does not happen with the hadron as

a whole, but with one of its constituents. Each quark (constituent) carries the

fraction four-momentum x of the nucleon with probability density q(x). q(x)

is the probability of finding the qth quark with fraction x of the nucleon four-

momentum. Under these assumptions, the structure functions can be written

as a sum of the elastic structure functions weighted by q(x). Taking into con-

sideration that the mass of the ith quark is also the fraction x of the nucleon
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mass Mq = xMh:

W1(Q
2, ν) = Σq

∫ 1

0

dxq(x)e2
q

Q2

4x2M2
h

δ

(
ν − Q2

2Mhx

)
= Σqe

2
qq(xB)

1

2Mh
, (1.28)

and

W2(Q
2, ν) = Σq

∫ 1

0

dxq(x)e2
qδ

(
ν − Q2

2Mhx

)
= Σqe

2
qq(xB)

xB

ν
. (1.29)

It was experimentally shown that the measured cross section of inelastic lepton-

nucleon scattering depends only on xB. As was mentioned this referred to as

scaling. If there where additional objects inside the nucleon besides the main

building partons, it would introduce new energy scales. The experimental ob-

servation of the scaling phenomenon was the first evidence that quarks are the

constituents of the hadron. The results which were obtained from the MIT-

SLAC Collaboration (1970) are presented below on Figure 1.3 and Figure 1.4

[7] [8]. It clearly shows the structure function W2’s dependence xB and inde-

pendence of the four-momentum transfer squared.

The DIS of the unpolarized electron by a nucleon can be described in terms of

two structure functions, F1(x) and F2(x)

F1(x) = MhW1 =
1

2
Σqe

2
qq(x), (1.30)

and

F2(x) = νW2 =
1

2
Σqxe2

qq(x). (1.31)
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Fig. 1.3: Scaling behavior of νW2(1/xB) = F2(1/xB) for various Q2 ranges [7].

The structure function F1 measures the parton density, while F2 describes the

momentum density. The relation between the structure functions F1(x) and

F2(x) is given by the following equation:

F2(x)
1 + γ2

1 + R
= 2xF1(x), (1.32)

where R(x, Q2) is the ratio of longitudinal to transverse deep inelastic scat-

tering cross sections and γ =
√

Q2

ν2 . In the naive Quark Parton Model, the

longitudinal-transverse interference is neglected. In the Bjorken limit it can be
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Fig. 1.4: Value of νW2(Q2) = F2(Q2) for xB = 0.25 [7].

reduced to the Callan-Gross relation:

F2(x) = 2xF1(x). (1.33)

The distributions of up and down quarks in the nucleon are defined as u(x)

and d(x). There are two categories of quarks: valence and sea quarks u(x) =

uv(x)+us(x), assuming that us(x) = ū(x). The constituent quark model (CQM

or QPM) states that the proton (neutron) contains two up (down) quarks and

one down (up) quark. Summing over all the constituents of a proton should
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result in the following sum rule:

∫ 1

0

dxuv(x) = 2, (1.34)

and ∫ 1

0

dxdv(x) = 1. (1.35)

The electromagnetic structure function for the proton and neutron can be ex-

pressed in terms of the quark distribution functions:

F ep
2 =

4

9
[xu(x) + xū(x) + xc(x) + xc̄(x)]+

1

9

[
xd(x) + xd̄(x) + xs(x) + xs̄(x)

]
.

(1.36)

F en
2 can be obtained from F ep

2 by replacing u→ d and vice versa.

From the last two equations, the structure functions for the proton and neutron

can be written in terms of the valence quark distribution functions:

F ep
2 = x

[
4

9
uv(x) +

1

9
dv(x)

]
, (1.37)

and

F en
2 = x

[
4

9
dv(x) +

1

9
uv(x)

]
. (1.38)

For most fixed-target experiments like CLAS run group EG1b (EG1b), the

spin asymmetry is given by the ratio of the polarized structure function to the

unpolarized:

A(x, Q2) =
g1(x)

F1(x)
, (1.39)
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where the polarized structure function g1(x) represents the helicity difference of

quark number densities. The spin asymmetry A and the unpolarized structure

function F1 are measurable quantities and through them one can determine

g1(x), which maybe expressed as:

g1(x) =
1

2
Σqe

2
q(q

+(x)− q−(x)) ≡ 1

2
Σqe

2
q∆q(x), (1.40)

where q+(−)(x) is the quark distribution function with spin oriented parallel

(antiparallel) to the spin of the nucleon.

1.4.1 Fragmentation Independent

The asymmetries from semi-inclusive pion electroproduction using proton or

deuteron targets can be written in terms of the difference of the yield from

oppositely charged pions [12]:

Aπ+±π−

1,p =
∆σπ+±π−

p

σπ+±π−
p

=
[(σp

π+
)1/2 − (σp

π+
)3/2] ± [(σp

π−)1/2 − (σp
π−)3/2]

[(σp
π+)1/2 + (σp

π+)3/2] ± [(σp
π−)1/2 + (σp

π−)3/2]
,

(1.41)

Aπ+±π−

1,2H =
∆σπ+±π−

2H

σπ+±π−
2H

=
[(σ2H

π+
)1/2 − (σ2H

π+
)3/2] ± [(σ2H

π−)1/2 − (σ2H
π−)3/2]

[(σ2H
π+)1/2 + (σ2H

π+)3/2] ± [(σ2H
π−)1/2 + (σ2H

π−)3/2]
.

(1.42)

Independent fragmentation identifies the process in which quarks fragment into

hadrons, independent of the photon-quark scattering process. In other words,

the fragmentation process is independent of the initial quark environment,

which initiates the hadronization process. Assuming independent fragmenta-

tion and using isospin (Dπ+

u = Dπ−
u and Dπ−

d = Dπ+

d
) and charge (Dπ+

u = Dπ−
d )
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conjugation invariance for the fragmentation functions, the following equality

holds:

Dπ+±π−

u = Dπ+

u ± Dπ−

u = Dπ+±π−

d . (1.43)

The polarized and unpolarized cross sections for pion electroproduction can be

written in terms of valence quark distribution functions in the valence region

as:

∆σπ+±π−

p =
1

9

[
4(∆u + ∆ū) ± (∆d + ∆d̄)

]
Dπ+±π−

u (1.44)

∆σπ+±π−

n =
1

9

[
4(∆d + ∆d−) ± (∆u + ∆u−)

]
Dπ+±π−

u (1.45)

∆σπ+±π−

2H =
5

9

[
(∆u + ∆ū) ± (∆d + ∆d̄)

]
Dπ+±π−

u (1.46)

and unpolarized:

σπ+±π−

p =
1

9

[
4(u + ū) ± (d + d̄)

]
Dπ+±π−

u (1.47)

σπ+±π−

n =
1

9

[
4(d + d̄) ± (u + ū)

]
Dπ+±π−

u (1.48)

σπ+±π−

2H =
5

9

[
(u + ū) ± (d + d̄)

]
Dπ+±π−

u . (1.49)

In the valence region (xB > 0.3), where the sea quark contribution is minimized,

the above asymmetries can be expressed in terms of polarized and unpolarized

valence quark distributions:

Aπ+±π−

1,p =
4∆uv(x) ± ∆dv(x)

4uv(x) ± dv(x)
(1.50)

Aπ+±π−

1,2H =
∆uv(x) + ∆dv(x)

uv(x) + dv(x)
. (1.51)
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The ratio of polarized to unpolarized valence up and down quark distributions

may then be written as

∆uv

uv
(x, Q2) =

∆σπ+−π−
p + ∆σπ+−π−

2H

σπ+−π−
p + σπ+−π−

2H

(x, Q2), (1.52)

and
∆dv

dv
(x, Q2) =

∆σπ+−π−
p − 4∆σπ+−π−

2H

σπ+−π−
p − 4σπ+−π−

2H

(x, Q2). (1.53)

The ratio of polarized to unpolarized valence quark distribution functions can

be extracted using the last two equations.

1.4.2 Independent Fragmentation Function Test

A test of independent fragmentation can be performed by probing polarized

proton and neutron targets with polarized electrons. The ratio of the differ-

ence of polarized to unpolarized cross sections for proton and neutron targets

(∆Rπ++π−
np ) can be written in terms of the structure functions:

∆Rπ++π−

np =
∆σπ++π−

p −∆σπ++π−
n

σπ++π−
p − σπ++π−

n

=
(∆u + ∆ū)− (∆d + ∆d̄)

(u + ū)− (d + d̄)
(x, Q2) (1.54)

=
gp
1 − gn

1

F p
1 − F n

1

(x, Q2).

The last expression of the asymmetry ∆Rπ++π−
np was obtained from the following
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equations:

gp
1 − gn

1 =
1

6

[
(∆u + ∆ū)− (∆d + ∆d̄)

]
, (1.55)

and

F p
1 − F n

1 =
1

6

[
(u + ū)− (d + d̄)

]
. (1.56)

Independent fragmentation holds if the ratio of the difference of polarized to

unpolarized cross sections for proton and neutron targets ∆Rπ++π−
np depends

only on the Bjorken scaling variable (x) and four momentum transferred squared

(Q2) of the quantities g1 and F1 measured in deep inelastic scattering, and is

independent of the fractional energy of the observed final state hadron (z).
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Experimental Setup

2.1 Target

2.1.1 Introduction

Polarized targets and polarized beams were recently acquired research tools

used to investigate the spin structure of the nucleon. Inclusive scattering experi-

ments using polarized targets and beams facilitate measurements of observables

exhibiting spin degrees of freedom, like the spin structure of the nucleon, the

electromagnetic structure of the nucleon in its ground state, etc [13]. The tech-

nology for producing targets containing polarized nucleons has been developed

over the past 50 years. For experiments using electrons as probes, due to the

small cross section of the electromagnetic interactions, one of the requirements

for polarized targets are a large thickness and resistance to the radiation dam-

age caused by a high electron beam intensity. The solid NH3 and ND3 targets

for the EG1b experiment were polarized via the Dynamic Nuclear Polarization

(DNP) method [14].

The EG1b polarized target system presented in Figure 2.1 consists of the follow-

ing main components: superconducting Helmholtz coils capable of producing a

5 T magnetic field, an evaporation refrigerator for target cooling to LHe tem-
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peratures, microwaves to induce spin flip in the target, an NMR system to

measure the target polarization, and housing for the solid target [13].

Fig. 2.1: EG1b Polarized Target System.

Target Magnet

A 5 T magnetic field is established using a pair of superconducting Helmholtz

coils made out of a Niobium-Titanium mixture with a critical temperature of

9 K. The magnet becomes superconducting below its critical temperature. In

order to establish a current in the coils, a section of the magnet is warmed

above its critical temperature. This process is called ”magnet energization”.

After the coils have been energized, the ”magnet switch” section of the coils is

cooled down and the current in the leads is ramped down. The full current of

the magnet is carried by the superconducting Helmholtz coils (Figure 2.2).

The superconducting coils are oriented such that the magnetic field is parallel to

the incident beam direction. The field induces the hyperfine splittings needed
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Fig. 2.2: The Schematic of the Target Magnet.

to polarize the target material using a 140 GHz RF wave. The field varies less

than 10−4 over a cylindrical volume of 20 mm diameter and the target length.

This configuration is necessary for DNP. The particles with scattering angles

between 0 - 50 degrees as well as 75 - 105 degrees are detected in the CLAS.

The Helmholtz coils block particles scattering between 50 and 75 degrees. The

target magnetic field does not interact with the electron beam and it is effective

in shielding the drift chambers from low energy Moller electrons. The target

field falls rapidly with distance as ∼ 1/r3 and bends scattered particles in the

azimuthal direction. The effect of the magnetic field on the drift chambers is

negligible [15] .

The Evaporation Refrigerator

The target material is located at the center of the magnet in a separate chamber,

called the banjo. Cooling the target to approximately 1 K was achieved using

a 4He evaporation refrigerator inserted through a 20 cm diameter pumping
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tube. The pumping tube connects the banjo and the pumping system. The

components of the refrigerator are the sintered copper separator pot, two series

of heat exchangers, and two lines that supply Helium to the banjo. The phase

separator allows the liquid to pass, but blocks the Helium vapor. The Helium

vapor is pumped away to cool the radiation baffles. The liquid in the phase

separator is directed to one of the two banjo lines. The heat exchangers are

remotely controlled by needle valves. The presence of the liquid Helium in the

target chamber cools the target material effectively [13] .

The Microwave System

The 140 GHz microwave used for DNP is supplied by the Extended Interaction

Oscillator (EIO) tube providing 16 Watts of power at the anode with a ∼ 2

GHz bandwidth tube. The frequency can be adjusted by mechanically changing

the size of the resonant cavity. Using a (10 kV) power supply, the microwave

frequency can be finely tuned over a range of 200 MHz [13]. The negative

and positive spin states of the nucleon differ by ∼ 400 MHz. Because of that,

the target polarization orientation can be changed by varying the microwave

frequency. Flipping the target spin using microwaves instead of changing the

Helmholtz field direction allows one to investigate target polarization systematic

effects.

Microwaves are delivered to the target material using a WR-6 rectangular gold-

plated wave guide located outside the cryostat and a 5 mm tube made out of

CuNi inside the wave guide system. The CuNi tube and the wave guide are

connected by a rectangular-circular adapter. This allows microwaves to travel

through the tube and into the rectangular segment of the wave guide supplying
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microwaves to the desired target cell during the experiment [16].

The Nuclear Magnetic Resonance System

The polarization of the target material during the experiment was monitored

using Nuclear Magnetic Resonance (NMR) techniques. The technique relies on

detecting nuclear magnetic spin transitions. The rate of transitions is related to

the population difference of the energy levels giving information on the original

target polarization. The magnetization of the sample, of volume V, with N

spins, each with I spin value is [13]

(M = NgµN IPI = Σi
N (µi

V
. (2.1)

When the external magnetic field is placed perpendicularly to a rotating reso-

nance frequency field with amplitude and frequency of (B1 and ω respectively,

nuclear Zeeman transitions are induced in the target material. The rate of these

transitions allows a measurement of the target polarization. The current in the

coil that surrounds the target generates an oscillating resonance frequency. The

absorption or emission of energy by the coil (energy gain or loss in the reso-

nance circuit) indicates the sign of the target polarization. A measurement of

the ratio of the strengths of the NMR signal with and without RF applied gives

the polarization of the target relative to the calculable thermal equilibrium

(TE) polarization [13]. The polarization of protons and deuterons at thermal

equilibrium are given as

P p
TE = tanh(

µpB

kBT
) (2.2)
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and

PND3
TE =

4 tanh(µdB/2kBT )

(3 + tanh2(µdB/2kBT ))
, (2.3)

where kB is the Boltzmann constant, B is external magnetic field, µp (µd) rep-

resents proton (deuteron) magnetic moment, and T is temperature. During the

experiment, the target polarization using NMR was measured via Q-meters of

the Liverpool-type. It measures the voltage and related power gain or loss in

the coil as a function of the input frequency. The Q-meter circuit is powered by

a generator which sweeps the RF frequency through the Larmor frequency of

the target. The inductance of the coil changes when the target absorbs or emits

energy, producing the impedance change of circuit. The impedance change is

related to the circuit voltage output. After accounting for the background mea-

surement of the Q-meter for the input frequency and calibrating the system via

the Thermal Equilibrium measurements, the target polarization is extracted.

The NMR technique was only used to monitor the target polarization during

the experiment, a final measurement of the polarization relied on measuring

the exclusive (quasi-)elastic scattering asymmetry.

The Target Chamber

The target chamber is placed at the top of the cryostat. The chamber is filled

with LHe to keep the target material cool. It contains four target cells that are

positioned using an aluminum target ladder structure. The cells are made of

plastic material (polychlorotrifluoroethylene (PCTFE)) with a wall thickness

of 0.2 mm, in order to minimize the amount of material. The target cells are
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1.5 cm in diameter and 1 cm in length. The PCTFE material was chosen

for its high resistance to radiation damage and for the absence of hydrogen.

The aluminum structure is connected to a brass disk minimizing the heat load

due to radiation. In order to reduce the thermal conductivity along the target

chamber, a teflon block was placed between the aluminum structure and the

brass disk. The disk itself is connected to the top flange by a threaded stainless

steel rod. The stainless steel rod is attached to the stepping motor [16].

Fig. 2.3: Schematic of the Target Insert.

During the experiment, two of the target cells were filled with NH3 and ND3, a

third cell with a 2.3 mm thick graphite disk, and the last cell was left empty. The

NH3 and ND3 targets were used for physics measurements, while the Carbon
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and the empty cells for background measurements. The desired target cell

can be placed along the beam axis using a stepper motor. The NMR coils

were wrapped around the outside surface of the cells. The coils, a 0.15 mm

in diameter CuNi tubing, were shaped rectangularly. Only one loop of NMR

coils was used for the NH3 target, while the ND3 target required four loops to

measure the polarization. Temperature sensors were located at several places

on the target chamber, and heater coils were attached below each target cell

for annealing.

2.1.2 Polarized Target Materials

A polarized solid target’s limited resistance to radiation damage is one of the

remaining challenges for using polarized targets in scattering experiments. At

present, solid ammonia and lithium deuteride are the target materials with the

highest resistance to radiation damage [17]. For the EG1b experiment, ammonia

targets were selected because of their ability to produce high polarization and be

resistant to high radiation dose caused by the incident electron beam. Another

advantage of an ammonia target is its high ratio of free nucleons (∼ 3/18),

approximately 16.7 % for 15NH3 and 28.6 % for 15ND3. One disadvantage of

choosing ammonia is the polarization background caused by 15N (spin - 1/2),

or 14N (spin - 1), which was accounted for by taking data using a solid 15N

target [18] [15]. The main target materials used for the EG1b experiment were

frozen ammonia, 15NH3, for the polarized protons and deuterated ammonia,

15ND3 for the polarized deuterons. In addition to 15ND3 and 15NH3 targets,

C12, liquid He4 and solid N15 were used to estimate the dilution of the data by
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background which can be attributed to the interaction of the incident electron

with the Nitrogen or Helium nucleons present in the target cell. This estimate

is referred to as a dilution factor [18] .

Fig. 2.4: EG1b Polarized Target in The CLAS Detector.

The target materials for the EG1b experiment were prepared by slowly freezing

ammonia gas at 77 K and crushing the solid ammonia into small pieces 1 - 3 mm

in diameter, at the Polarized Target Lab of the University of Virginia Physics

Department. This design of the target helps to cool it effectively using liquid

Helium. Free electrons are introduced into the frozen ammonia by irradiating it

with an electron beam depositing a dose of 1017 electrons/cm2 at a temperature

near 80 K [19]. Dynamic Nuclear Polarization, explained below, uses the free
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electrons to polarize the nucleii in the target. During the experiment, the

polarized target is slowly damaged with the electron beam. This damage can

be repaired by warming the target material to 80 K for NH3, and higher for

ND3. During this annealing, free radicals (paramagnetic centers) produced

at low temperatures are recombined, decreasing the number of paramagnetic

centers. After repeating this process several times, the target material exhibits

significant decrease in the polarization and has to be replaced. The polarized

target granules change their color from grey to purple after radiation damage

(Figure 2.5).

Fig. 2.5: EG1b target material after the radiation damage.

Dynamic Nuclear Polarization (DNP) is a process in which the polarization of

free electrons is transferred to a nucleus [15]. In DNP the target is doped with

paramagnetic impurities by chemical doping or by irradiating the target in an

electron beam. For low temperatures, on the order of 0.5 K, and high magnetic
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fields on the order of 2.5 Tesla, the free electron polarization approaches 100%.

The protons inside the target are unpolarized. An applied microwave field with

a frequency close to the electron spin resonance induces transitions which flip

the spin of the electron and, because of the electron-nucleus hyperfine couping,

the spin of the nearby nucleon. The relaxation time of the electron is 10−3 s,

whereas the relaxation time of the proton in the target is 103 s. Due to such a big

difference of the relaxation time of the proton and electron, the flipped electron

spin rapidly returns to its thermal equilibrium state from where it induces a

proton spin-flip again. As a result, the spin polarization is transferred to the

protons after some time. The average beam-target polarization product for the

EG1b experiment was Pb × Pt = (0.51 ± 0.01) and Pb × Pt = (0.19 ± 0.03) for

the NH3 and ND3 targets respectively [20].

2.2 The CEBAF Large Acceptance

spectrometer

2.2.1 Introduction

The CEBAF Large Acceptance Spectrometer (CLAS), located in Jefferson

Lab’s Hall B, was used to measure the final state particles resulting from the

scattering of a polarized electron by a polarized nucleon. The CLAS uses six su-

perconducting coils to establish a toroidal magnetic field encircling the incident

electron’s momentum direction. A set of three drift chambers are positioned to

determine the trajectories of particles which pass through the six gaps between

the magnet coils. The first drift chamber, Region 1 (R1), is placed at the en-
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trance to the magnetic coil. A second chamber, Region 2 (R2), is placed in the

center of the coils. The final chamber, Region 3 (R3), measures charged parti-

cles leaving the toroidal field. A total of eighteen drift chambers are available

to reconstruct the trajectory of charged particles passing through the magnetic

field. After the drift chamber system, the CLAS detector is equipped with a

Cherenkov counter for separating electrons from pions, and with scintillators, to

determine the time of flight of a charged particle. An electromagnetic calorime-

ter is placed at the exit of the detector to detect neutral particles and improve

the detector’s ability to distinguish between electrons and hadrons.

2.2.2 The Torus Magnet

The CLAS’s torus magnet consists of six superconducting coils located around

the beam line in a toroidal geometry, producing a magnetic field in the ϕ

direction when the z-axis of a spherical coordinate system is aligned with the

incident beam direction. A sector is defined based on the boundaries of each

magnetic coil resulting in a total of six sectors. The maximum current for

the CLAS magnet is 2860 Amps corresponding to a total magnetic field in the

forward direction of 2.5 T-m and 0.6 T at a polar scattering angle of 90 degrees.

The magnet itself is around 5 m in diameter and 5 m in length. The coils of

the magnet are cooled by liquid Helium circulating through cooling tubes at

the magnet’s superconducting temperature of 4.5 K [16]. A charged particle’s

momentum is determined by the radius of curvature through the magnetic field

to a resolution of ∆p/p from 0.5 % to 1 % [21]. In the EG1b experiment, the

operated torus values were: 2250, −2250, 1500, −1500 Amps.
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Fig. 2.6: The CEBAF Large Acceptance spectrometer.
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Fig. 2.7: CLAS Torus Magnet.

2.2.3 Drift Chambers

The drift chamber system in the CLAS is divided into three regions, each con-

sisting of six separate chambers (sectors). The drift chambers contain three

types of wires stretched between the endplates: sense, guard and field. The end

plates are attached to the drift chamber so that the angle they form is equal

to 60 (360/6) degrees. Each drift chamber is subdivided into two separate su-

perlayers. Each superlayer has six layers of drift cells. Each drift cell has one

sense wire and is surrounded by six field wires forming a hexagonal shape. Each

superlayer is surrounded by guard wires at a positive potential to complete the

cell symmetry establishing a radial electric field within the drift cells. The sense

(field) wire is operated at positive (negative) potential. In each superlayer the

distance between the sense and field wire increases with the radial distance from

the target. In R1 the average distance between the sense and field is 0.7 cm, in

R2 1.15 cm, and in R3 2.0 cm [22]. The CLAS drift chamber gas is a 90 - 10 %
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mixture of the argon (Ar) and CO2, where Ar has an ionization gain of ≈ 104.

Inside the drift chamber, a constant pressure is provided by outflowing the gas.

The chamber end plates have a circuit board with a single channel differential

pre-amplifier for each sense wire.

The drift chamber system is used to track charged particles. A drift chamber is

a particle tracking detector that measures the drift time of liberated electrons

in a gas to calculate the spacial position of the ionizing particle with respect to

the sense wire producing the signal.

Fig. 2.8: A charged particle passing through two superlayers of the drift cham-
ber.

An electric field in a drift chamber is produced by the anode (sense) and cathode

(field) wires. A charged particle traveling through the drift chamber ionizes the

gas, freeing electrons that are accelerated to the anodes. After a drift time (δt),

electrons are collected at the anode (sense wire) generating a pulse for the time
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measurement. The distance of the traversing particle from the known position

of the sense wire can be calculated using the drift time and drift velocity.

2.2.4 Cherenkov detector

The threshold CLAS Cherenkov detector is used to distinguish electrons from

pions. The gas mixture used to fill the Cherenkov counter is perfluorobutane

C4F10 gas at atmospheric pressure. The advantage of perfluorobutane C4F10 is

its high index of refraction n = 1.00153, which results in a high photon yield.

The threshold for Cerenkov radiation can be written as v > c/n, or for energies

E > γ ×m, where v is the charged particle velocity, n the index of refraction

for the medium, c the speed of light and γ = 1q
1− 1

n2

. In our case γ = 18.098.

Accordingly, one can calculate the energy threshold for different charged parti-

cles; for electrons it is 9 MeV and for pions 2.5 GeV. The Cherenkov detector

was designed to maximize the coverage in each of the sectors up to an angle

θ = 45 degrees [23] .

Light is collected using a system of mirrors to focus the light onto cones, which

are connected to the Phillips XP4500B type photomultiplier tubes (PMTs). In

the extreme regions of the spectrometer’s angular acceptance, the number of de-

tected photoelectrons is too low. Additional photomultiplier tubes were placed

in these regions to compensate for the low photoelectron detection efficiency.

2.2.5 Scintillators

The CLAS is equipped with 288 scintillator counters. The scintillators are

used to determine the time of flight for a charged particle and to determine
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Fig. 2.9: One module of the Cherenkov Counter.

coincidences between particles. The time of flight system has a time resolution

at small polar angles of ∆t = 120 ps and ∆t = 250 ps at angles above 90 degrees.

This time resolution helps discriminate between pions and kaons up to 2 GeV/c.

The time of flight system is located between the Cherenkov detectors and the

electromagnetic calorimeters. The scintillator paddles, made from BC 408 [23],

are located perpendicular to the average particle trajectory, and have an angular

polar coverage of 1.5 degrees each. Each sector of the CLAS consists of 48

scintillator paddles with a thickness of 5.08 cm. The length of the scintillators

varies from 30 cm to 450 cm and the width is between 15 cm at small polar

angles and 22 cm for the large angles [24].
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Fig. 2.10: Time-of-Flight system for CLAS.

2.2.6 Calorimeter

The CLAS contains eight electromagnetic calorimeter modules. A calorimeter

measures the total energy deposited by a particle that enters the detectors

acceptance. Calorimeters are sensitive to neutral particles with sufficient energy

to produce secondary particles (referred to as a shower) that can be used to

distinguish between the energy deposited by electrons and hadrons. The CLAS

calorimeter has three main functions:

• Detection of electrons at energies above 0.5 GeV;

• Detection of photons with energies higher than 0.2 GeV;

• Detection of neutrons, with discrimination between photon and neutrons

using time-of-flight techniques.
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Fig. 2.11: One module of electromagnetic calorimeter.

Calorimeter detectors are placed in the forward region of each sector that span

polar angles of 10− 45 degrees. Two additional calorimeters are located in sec-

tors 1 and 2 that span polar angles of 50 to 70 degrees. The forward calorimeter

has a lead/scintillator thickness ratio of 0.2, with 40 cm of scintillators and 8

cm of lead per module. The lead-scintillator sandwich is shaped to form an

equilateral triangle in order to match the hexagonal geometry of the CLAS.

Each scintillator layer contains 36 paddles parallel to one side of the triangle,

with this configuration each orientation is rotated by 120 degrees from each

other. This gives three views, each containing thirteen layers providing stereo

information locating the energy deposition. There is a longitudinal sampling

of the shower to improve hadron identification. Each set of thirteen layers is

subdivided into five inner layers and eight outer layers.
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2.3 The Continuous Electron Beam

Accelerator Facility (CEBAF)

at JLAB

The Continuous Electron Beam Accelerator Facility (CEBAF) at the Thomas

Jefferson National Accelerator Facility (JLab) contains two 0.5 GeV linacs con-

nected by five sets of recirculated arcs and a 45 MeV polarized electron beam

injector with a transverse emittence of less than π mm-mrad and a longitu-

dinal emittence of less than 15π keV-degrees. In order to minimize the total

accelerator circumference, the accelerator structure was arranged in two sep-

arate linac segments. Each linac segment contains twenty five cryomodules

that house eight superconducting radio-frequency cavities. Each cryomodule is

seperated by a vacuum port, beam diagnostics, and quadrupole and dipole mag-

nets. Quadrupole and dipole magnets are used to focus and steer the beam.

Electrons are accelerated by electric fields within niobium cavities that have

been cooled to 2 K using liquid Helium. The field within the cavities is created

by klystrons that propagate radio frequency waves through wave guides to the

accelerating cavities [25].

A Klystron is a microwave amplifier used to generate electromagnetic waves

that are transported by a waveguide from the Klyston to the niobium cavity.

The electromotive force (EMF) induced in the RF cavity is roughly parallel to

the beam axis and decaying to zero radially at the walls. The EMF induces

charge on the interior surfaces of the cavities such that the electrons moving

through the cavity see a positive charge in front of them and accelerate towards
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Fig. 2.12: CEBAF 12 GeV upgraded accelerator.

that charge. As a result, the klyston establishes an electromagnetic wave within

the niobum cavity that collects electrons on the crest of the wave into bunches

that are spaced by 2.04 ns [26].

After the beam reaches the desired energy it is sent to one of the three Halls

using an RF kicker at the switch yard. This allows the Halls to receive separate

energies.

Polarized electron beams are created at JLab using a GaAs photocathode. The

polarized electrons are produced by bandgap photoemission from a strained

GaAs cathode using a tunable Ti-Saphire laser having wavelengths from 780

to 850 nm with at least 500 mWatts of output power [27]. When the cathode

is exposed to circularly polarized laser light, polarized electrons move from the

valence region to the conduction band. In order to free the electrons from the

conduction band, the surface of the GaAs cathode is coated with a single layer
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Quantity Value
Electron beam energy E (GeV) 0.8 ≤ E ≤ 6.0

Max Electron beam current in one Hall(µAmp) 100
Energy spread (∆E/E) 10−4

Electron beam polarization 40-80%
Simultaneous beams 3

Number of linac segments 2
Number of passes 4

Maximum energy gain per pass (GeV) 1.5

Table 2.1: The CEBAF accelerator parameters [25].

of cesium and fluorine. As a result, electrons in the conduction band are bound

to the surface of the material by only 4 eV. For the EG1b experiment, the sign

of the electron polarization was flipped with a frequency of 1 Hz by reversing

the laser polarization with a pseudo-random sequence. The electron beam po-

larization for each hall can be changed with a Wien Filter, which can rotate

electron spin without changing its direction [28].

The electron beam quality during the experiment is monitored with several

devices: Mott polarimeter, Moller polarimeter, Faraday cup and harp scan.

The beam polarization is measured using a 5 MeV Mott polarimeter at the

injector and a Moller polarimeter in Hall B, which is located upstream to the

target position. The average electron beam polarization during the EG1b ex-

periment was measured by the Hall B moller polarimeter to be (70± 5)% [29].

The integrated electron beam current is measured using a Farady cup located

downstream of the CLAS target. It contains several layers of lead and scin-

tillator in order to create a large amount of detected secondary particles from

the primary electron beam. The position of the beam is measured using beam

position monitors. The profile of the beam is monitored with a harp scan, a
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device with thin iron and tungsten wires that measures the beam charge when

swept through the beam.
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Data Analysis

This chapter describes the techniques used to analyze the data collected during

the EG1b experiment and calculate semi-inclusive cross sections for the follow-

ing reactions: −→e −−→N → e−π+X and −→e −−→N → e−π−X using NH3 and ND3

polarized targets respectively. The goal of this work is to measure charged pion

asymmetries defined according to the incident electron helicity and the target

polarization. The measured asymmetries may be used to determine if the frag-

mentation function is independent of the observed final state hadron fractional

energy (z) [12]. The quantity (∆Rπ++π−
np ) is defined in terms of the ratio of the

difference of polarized semi-inclusive deep inelastic scattering cross sections for

proton and neutron targets to unpolarized cross sections:

∆Rπ++π−

np =
∆σπ++π−

p −∆σπ++π−
n

σπ++π−
p − σπ++π−

n

. (3.1)

A measure of ∆R can be used to test for independent fragmentation when it is

compared to inclusive structure functions as shown in Eq. (1.54).

3.0.1 The CLAS Data Selection

The data files from the EG1b experiment chosen for this analysis are listed in

Table 3.1. During the experiment, 2.2 GeV, 4.2 GeV and 5.7 GeV longitudinally
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polarized electron beams were used to probe the polarized frozen ammonia

NH3 and ND3 targets. This work will discuss the analysis of the 4.2 GeV

energy electron beam data set as this energy provided the most statistics. The

collected data have been tested by applying restrictions discussed later in this

chapter.

Run Set Target Type Torus Current(A) Target Polarization HWP
28100 - 28102 ND3 +2250 -0.18 +1
28106 - 28115 ND3 +2250 -0.18 -1
28145 - 28158 ND3 +2250 -0.20 +1
28166 - 28190 ND3 +2250 +0.30 +1
28205 - 28217 NH3 +2250 +0.75 +1
28222 - 28236 NH3 +2250 -0.68 +1
28242 - 28256 NH3 +2250 -0.70 -1
28260 - 28275 NH3 +2250 +0.69 -1
28287 - 28302 ND3 -2250 +0.28 +1
28306 - 28322 ND3 -2250 -0.12 +1
28375 - 28399 ND3 -2250 +0.25 -1
28407 - 28417 NH3 -2250 +0.73 -1
28456 - 28479 NH3 -2250 -0.69 +1

Table 3.1: EG1b runs analyzed for this work.

3.1 Particle Identification

Additional tests were performed on the electron and a pion candidates recon-

structed using the standard CLAS software package on the raw data collected

during the EG1b experiment. Electrons are identified by matching the charged

particle hits in the Cherenkov counter, electromagnetic calorimeter, and Time

of Flight system. Geometrical and timing cuts are applied to improve electron

identification. In addition, cuts are applied on the energy deposited by the
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particle into the calorimeter and the number of photoelectrons produced in the

Cherenkov counter. Charged pions are identified by matching the hits in the

drift chamber and ToF counter, along with a Cherenkov cut requiring that the

number of photons for pions be less than two.

3.1.1 Electron Identification

The CLAS trigger system required the particle to deposit energy in the elec-

tromagnetic calorimeter and illuminate the Cherenkov counter within a 150 ns

time window (Figure 3.1). Unfortunately, this trigger suffers from a background

of high energy negative pions that may be misidentified as electrons. The pion

contamination of the electron sample is reduced using cuts on the energy de-

posited in the electromagnetic calorimeter and the momentum measured in

the track reconstruction for the known magnetic field. The energy deposition

mechanism for the pions and electrons in the electromagnetic calorimeter is

different. The total energy deposited by the electrons in the EC is proportional

to their kinetic energy, whereas pions are minimum ionizing particles and the

energy deposition is independent of their momentum (Figure 3.2). The pion

background is further suppressed using geometrical and time matching between

the Cherenkov counter hit and the measured track in the drift chamber.

EC CUTS

The CLAS electromagnetic calorimeter was used to reduce the misidentification

of electron and negative pion candidates. The electromagnetic calorimeter con-

tains thirteen layers of lead-scintillator sandwiches composed of ∼ 2 mm thick
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Fig. 3.1: Example of electron passing through the drift chambers and creating
the signal in the Cherenkov counter and electromagnetic calorimeter. Electron
track is highlighted by the blue line (Run number 27095, Torus Current +2250
(inbending)).

lead and 10 mm thick scintillator. Each set of thirteen layers are subdivided into

five inner and eight outer layers that are named the inner and outer calorimeter

respectively. Electrons interact with the calorimeter producing electromagnetic

showers that release energy into the calorimeter. The deposited energy is pro-

portional to the momentum of the electrons. Figure 3.3 shows the correlation

of the inner and outer calorimeter electron candidate’s energy measured by the

calorimeter and divided by the particles momentum reconstructed by the drift

chamber. As shown in the Figure 3.3, there is an island near E/p = 0.2, which

contains most of the electron candidates as well as some regions below 0.2 which

will be argued to be negative pions misidentified as electrons.

Pions entering the calorimeter are typically minimum ionizing particles, loos-
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Fig. 3.2: Momentum versus ECtotal.

ing little of their incident energy in the calorimeter at a rate of 2 MeV g−1cm2.

Electrons, on the other hand, deposit a larger fraction of their momentum into

the calorimeter. As a result, the energy deposited into the electromagnetic

calorimeter is different for electrons and pions. Pions loose about 0.08 GeV

of energy traversing the calorimeter independent their momentum thereby pro-

ducing the constant signal in the calorimeter around 0.08 GeV. In order to

reduce misidentified pions from the electron sample, the following cut has been

applied:

ECinner > 0.08× p, (3.2)

where p represents particle momentum and ECinnner the inner part of the

calorimeter.

Since the energy loss of pions is related to the calorimeter thickness, a correla-
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tion can be established between the energy deposited into the inner and outer

layers of the calorimeter:
ECtot

ECinner
=

13

5
, (3.3)

which gives the following cut for the energy deposition into the outer layer of

the calorimeter:

ECtot > 0.2× p. (3.4)

Cherenkov Counter Cut

The Cherenkov counter has been used to further reduce the negatively charged

pion background in the reconstructed electron sample. When the velocity of

a charged particle is greater than the local phase velocity of light or when

it enters a medium with different optical properties, the charged particle will

emit photons. Cherenkov light is emitted at the critical angle θc representing

the angle of Cherenkov radiation relative to the particle’s direction. It can be

shown that the cosine of the Cherenkov radiation angle is inversely proportional

to the velocity of the charged particle

cos θc =
1

nβ
, (3.5)

where βc is the particle’s velocity and n the index of refraction of the medium.

The charged particle in time t travels a distance βct, while the electromagnetic

waves travel c
nt. For a medium with given index of refraction n, there is a

threshold velocity βthr = 1
n , below which no radiation is emitted. This process

may be used to distinguish between the highly relativistic electrons and the less
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(a) Before cuts.

(b) After cuts.

Fig. 3.3: ECinner/p versus ECtot/p before and after EC cuts (ECtot > 0.2p and
ECinner > 0.08p). After applying EC cuts about 46% of the events have been
removed from the electron sample.

relativistic pions based on the number of photons produced. The number of

photons produced per unit path length of a particle with charge Ze and per

unit energy interval of the photons is proportional to the sine of the Cherenkov

angle [31]
d2N

dEdx
=

αz2

!c
sin2 θc =

αz2

!c

[
1− 1

β2n2(E)

]
(3.6)
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d2N

dλdx
=

2παz2

λ2
[1− 1

β2n2(λ)
] (3.7)

β =
v

c
=

pc√
(pc)2 + (mc2)2

. (3.8)

Taylor expanding Eq. 3.6 and keeping only the first two terms we get following

d2N

dEdx
=

αz2

!c
sin2 θc =

αz2

!c
[β2n2(E)− 1]. (3.9)

The gas used in the CLAS Cerenkov counter is perfluorobutane C4F10 with

index of refraction equal to 1.00153. The number of photoelectrons emitted

by electrons is about thirteen. On the other hand, calculations show that the

number of photons produced by the negatively charged pions in the Cherenkov

detector is approximately 2. The theoretical results of the number of pho-

tons produced by the electrons and pions when passing through the Cherenkov

counter are shown on Figure 3.4.

The distribution of the number of photoelectrons measured in the Cherenkov

detector and the energy deposition dependence on number of photoelectrons are

shown on Figure 3.5 and Figure 3.6. One can see that a single photoelectron

peak is caused by misidentifying pions as electrons.

Geometric and Timing cuts

Negative pions may be produced when the lepton scatters at a polar angle close

to zero and is not observed by the detector. In order to reduce the electron

sample contamination due to those pions, geometrical cuts on the location of

55



CHAPTER 3. DATA ANALYSIS

(a) For electrons.

(b) For pions.

Fig. 3.4: Theoretical Calculation of the Number of Photoelectrons for electrons
and pions.

the particle at the entrance to the Cherenkov detector and time matching cuts

have been developed by Osipenko, so called OSI cuts [32]. For each CLAS

Cherenkov detector segment the following cut has been applied

|θp − θp
center − θp

offset| < 3σp, (3.10)
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Fig. 3.5: The number of photoelectrons without cuts.

Fig. 3.6: The total energy deposited into the Calorimeter versus the Number
of Photoelectrons.

where θp represents the measured polar angle with respect to a projectile plane

for each electron event. The Cherenkov counter’s projective plane is an imag-

inary plane behind the Cherenkov detector where Cherenkov radiation would

have arrived if it had moved the same distance from emission point to the

PMT, without reflections in the mirror system. θp
center is the polar angle from

the CLAS detector center to the image of Cherenkov counter segment center
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and θp
offset is the shift in the segment center position. In addition to geometri-

cal cuts, timing cuts have been applied to match the time between a Cherenkov

counter hit and time of flight system.

The pion contamination in an electron sample was estimated by fitting the num-

ber of photoelectron distribution using two Gaussian distributions convoluted

with a Landau distribution [33]:

Npe = p0e
−0.5

“
x−p1

p2

”2

+ p4
1

1−
(

x−p5
p6

) + p6e
−0.5

“
x−p7

p8

”2

. (3.11)

The fits in Figure 3.7.(a) suggest that the pion contamination in the electron

sample is 9.63% ± 0.01% before applying the OSI cuts and after the OSI cuts

the contamination is about 4.029% ± 0.003% (Figure 3.7.(b)).

3.1.2 Pion Identification

Charged pions are identified using a coincidence hit in the drift chamber and

Time-of-Flight (ToF) counter. Pions are separated from the other charged

particles by looking at the particle momentum versus the β distribution. The

particle velocity, β = v
c , is calculated from the difference of the RF time and the

time-of-flight measurement in the ToF system with the path length from the

vertex to the ToF counters. The mass of the charged particle can be identified

by combining the particle’s β with the particle momentum obtained from the

track measured by the drift chamber in the known magnetic field. The particle
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(a) Before Cuts.

(b) After OSI Cuts.

Fig. 3.7: The number of photoelectrons before and after geometrical and time
matching cuts.

mass in a magnetic field is given as

p =
mβ√
1− β2

(3.12)

m = p
√

(β2 − 1) (3.13)

β =
Lpath

tflight
, (3.14)
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where m is the mass of the charged particle, β its velocity, p particle momentum,

Lpath the path length from the vertex to scintillators and tflight the time of flight

from the interaction vertex to the ToF system.

Using the above information (particle momentum from the drift chambers and

the timing information from the ToF system), the mass squared of the charged

particle was calculated and is shown on Figure 3.9. The pion mass band is

around ∼ 0. To isolate charged pions from the rest of the particles, a 3σ cut

on the momentum versus β distribution has been applied [34].

Fig. 3.8: The charged particle momentum versus β distribution. The pion and
proton bands are clearly separated.
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Fig. 3.9: The charged particle momentum versus mass squared distribution
for the −→e p → −→e ′π+n electroproduction process. The bands around 0 and 1
represent pions and protons respectively [34].

In addition to the charged particle velocity (β), the fiducial volume cuts have

been applied for the charged pion identification. Since the drift chambers and

scintillators are used for pion detection, the polar angle range where pions are

detected is much larger than for electrons. For the EG1b experiment, pions were

detected from 8◦ to 180◦ [34]. The pion identification code has been developed

by Joshua Pierce [35].

3.2 Event Reconstruction Efficiency

The goal of this work is to measure the semi-inclusive asymmetry when an

electron and a pion are detected in the final state. For this analysis, pions of

opposite charge will be observed using the same scintillator paddles by flipping
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the CLAS torus magnetic field direction. Although the pions will be detected

by the same detector elements, the electrons will intersect different detector

elements. As a result, the electron reconstruction efficiency was evaluated in

terms of the electron rate observed in two different scintillator paddles detecting

the same electron kinematics.

3.2.1 Inclusive Electron Event Reconstruction Efficiency

The electron reconstruction efficiency for individual scintillator detectors using

the 4.2 GeV EG1b data is investigated below. Only the electron is detected in

the final state (inclusive case). The pion contamination in the electron sample

was removed by applying the cuts described above. The electron paddle num-

bers 10 (B<0) and 5 (B>0) were chosen respectively, because they contained

the most electron events in a first pass semi-inclusive pion analysis of the data

set. The electron kinematics (momentum, scattering angle and invariant mass)

for these scintillators is shown on Figure 3.10.

Ratios of the inclusive electron rate, normalized using the gated Faraday cup,

detected in scintillator paddles # 5 and # 10 were measured. The two ratios

are constructed to quantify the CLAS detector’s ability to reconstruct electrons

in scintillator paddle #5 using a positive Torus polarity and scintillator #10

using the negative Torus polarity.

ND3, B > 0, PaddleNumbere− = 5

ND3, B < 0, PaddleNumbere− = 10
= 1.57 ± 0.16 (3.15)

NH3, B > 0, PaddleNumbere− = 5

NH3, B < 0, PaddleNumbere− = 10
= 1.76 ± 0.17. (3.16)
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Notice the above ratios are statistically the same. The semi-inclusive analysis

to be performed in this thesis will be taking ratios using an ND3 and NH3

target. Below is the observed ratio comparing the inclusive electrons observed

in scintillator #5 for a positive torus polarity and an ND3 target to the electrons

observed in scintillator #10 when the torus polarity is negative and the target

is NH3.

(a) (b)

(c)

Fig. 3.10: Electron Kinematics. a) Electron Momentum((NH3,B>0),
(NH3,B<0), (ND3,B>0) && (ND3,B<0)), b) Electron Scattering Angle θ
((NH3,B>0), (NH3,B<0), (ND3,B>0) && (ND3,B<0)) and c) W Invariant
mass((NH3,B>0), (NH3,B<0), (ND3,B>0) && (ND3,B<0))

ND3, B > 0, PaddleNumbere− = 5

NH3, B < 0, PaddleNumbere− = 10
= 1.55 ± 0.15. (3.17)
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The above ratios, which have been observed to be ammonia target independent,

indicate a difference in an electron detector efficiency when the torus polarity

is flipped. An electron detection efficiency ”correction coefficient” is defined in

terms of the above ratio and measured to be ND3,B>0,EPaddleNumber=5
NH3,B<0,EPaddleNumber=10 = 0.645

and ND3,B<0,EPaddleNumber=10
NH3,B>0,EPaddleNumber=5 = 1.82. The impact of these corrections on the data

is illustrated in the next section.

3.2.2 Exclusive and Semi-Inclusive Event

Reconstruction Efficiencies

After determining the electron reconstruction efficiency for the selected paddle

numbers, the measured single pion electroproduction rate was compared to

the MAID 2007 unitary model that has been developed using the world data

of pion photo and electro-production to determine the impact of using the

above ”correction coefficient”. The model is well adopted for predictions of the

observables for pion production, like five fold cross section, total cross section,

etc.

The MAID 2007 model has predictions of the total cross section for the following

two cases that are related to our work:

γ∗ + proton(NH3)→ π+ + neutron (3.18)

γ∗ + neutron(ND3)→ π− + proton. (3.19)

The ratio of the pions detected in the scintillator paddles, located between the
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Cherenkov counter and electromagnetic calorimeter, is shown in Figure 3.11.

The ratios were taken for four different cases. The intrinsic assumption is that,

for the inbending case, positive pions and for the outbending case negative

pions have the same trajectories with the same kinematics. In addition, nega-

tively charged pions in the inbending field and positively charged pions in the

outbending fields are detected by the same detector elements.

Fig. 3.11: Pion paddle number versus Ratio for Semi-Inclusive case.

Using MAID 2007, the total cross section was calculated for the following in-

variant mass and four momentum transferred square values: 1.7 GeV < W<1.8

GeV and Q2=1.1 GeV2 [36].

σ = σT +εσL+
√

2ε(1 + ε)σLT cos φπ
CM++εσTT cos 2φπ

CM+h
√

2ε(1− ε)σLT ′ sin φπ
CM ,

(3.20)
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where φπ
CM is the pion azimuthal angle in the CM frame, ε = (1 + 2(1 +

ν2

Q2 ) tan2 θe
2 )−1 is the virtual photon polarization, ν = Ei−Ef the energy differ-

ence of the initial and final state electron, Q2 = 4EiEf sin2 θe
2 the four momen-

tum transferred squared, θe the electron scattering angle and h the electron

helicity. After applying corrections from the inclusive cases, the ratios have

been compared to the results from MAID2007. The difference of the measured

and MAID2007 model ratios for each pion paddle number is shown in Fig-

ure 3.12. One can conclude from Figure 3.12 that the ”inclusive corrections” do

not impact single pion production rates for the exclusive cases.

Fig. 3.12: Pion Paddle Number versus MAID2007 -
Experiment(N(π−,ND3)/N(π+,NH3)). The Black and red data represent
B>0/B<0 and B<0/B>0 cases respectively before corrections. The green and
blue points represent the ratios for B>0/B<0 and B<0/B>0 after inclusive
corrections.
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3.3 Asymmetries

The double spin asymmetry measurements in this thesis are performed by com-

paring scattering events that occur when the incident probe spin and nuclear

target spin are parallel to the scattering events that occur when the spins are

anti-parallel.

3.3.1 Beam Charge Asymmetry

The helicity of the electron beam was flipped at a rate of 1 Hz. The helicity is

prepared at the source such that helicity pairs are produced pseudo randomly.

Fig. 3.13: The Helicity State: A one bit signal from the beam injector gives the
helicity information, whereas a sync bit with a 2 Hz frequency is generated at
the same time and is equal to the helicity flip time.

If the first electron bunch is pseudo randomly chosen to be positive (negative)

then it is labeled as the original helicity state and denoted in software by a 2
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(1). The next helicity state is prepared to be a complement to the first state

and labeled in the software as either a 4, if the original helicity state was a 1

(negative), or 3 if the original helicity state was a 2 (positive). The helicity

selection process is then repeated.

Figure 3.13 illustrates the signals used to label the helicity states. The clock

pulse (SYNC) is used to indicate that a change in the pockel cell used to define

the helicity state may have occurred. The helicity bit identifies the helicity

state that was set. The original/complement pulse identifies if the state is an

original or complement helicity state. All three bits are recorded in the raw

data file for each event and then converted to the labels 1, 2, 3, 4 during DST

file production once the particles have been reconstructed.

Two scalers were used to record several ancillary detectors, such as a Faraday

cup and several PMTs mounted on the beam line, according to their helicity

label. One of the scalers was gated by the DAQ live time in order to record

beam conditions when the DAQ was able to take data and not busy recording

data. The second scaler remained ungated. Both scalers recorded the SYNC

and Helicity signals from the injector along with the counts observed from

ancillary detectors during the SYNC interval. The Faraday cup signal recorded

by the gated helicity scaler is used to normalize the events reconstructed during

the same helicity interval. The beam charge asymmetry below is measured by

the gated helicity scaler. For each run number, a gaussian fit was used to fit

the beam charge asymmetry distributions as in Figure 3.14. The beam charge

asymmetry is defined as

ABeamCharge =
ΣFChel1,hel2 − ΣFChel4,hel3

ΣFChel1,hel2 + ΣFChel4,hel3
, (3.21)
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where FChel1,hel2 (FChel4,hel3) represents the Faraday cup counts observed for

the original helicity 1 and 2 states (the complement helicity 3 and 4 states).

Fig. 3.14: Beam charge asymmetry for run #28101 using the gated Faraday
cup counts for two helicity pairs (1-4 and 2-3 helicity pairs). A1−4 = (11.5 ±
4.4)× 10−5 and A2−3 = (−2.3 ± 4.4)× 10−5.

EG1b data sets, with the same half wave plane, target type, target polarization

and beam torus, have been combined. The beam charge asymmetries have been

calculated for the each run group and are listed in Table 3.2.

3.3.2 Electron Asymmetry

A measurement of the electron cross section helicity difference needs to ac-

count for a possible helicity dependence of the incident electron flux (charge

Asymmetry). Figure 3.15 shows the reconstructed electron asymmetry before

it is normalized by the gated Faraday Cup as a function of the run number for
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Run Group Half wave plane(HWP) A1−4 A2−3 × 10−4

28100 – 28105 +1 5.88 ± 34.40 4.03 ± 34.36
28106 – 28115 -1 7.53 ± 22.30 8.28 ± 22.30
28145 – 28240 +1 31.70 ± 7.99 30.40 ± 7.99
28242 – 28284 -1 49.6 ± 10.8 47.9 ± 10.8
28286 – 28324 +1 36.3 ± 11.6 37.0 ± 11.5
28325 – 28447 -1 21.1 ± 13.4 22.2 ± 13.4
28449 – 28479 +1 −11.6 ± 16.5 −21.6 ± 16.5

Table 3.2: Run Group versus Beam Charge Asymmetry.

the 4.2 GeV data set. The reconstructed electron asymmetry can be defined

following way:

A+−
NES =

NES+ −NES−

NES+ + NES− ≡ (2− 3), (3.22)

or

A−+
NES =

NES− −NES+

NES− + NES+
≡ (1− 4), (3.23)

where NES+ (NES−) represents number of electron scattered for the positive

(negative) beam helicity.

Systematic effects on the asymmetry measurement may be investigated by sep-

arating the data into two groups based on which helicity state is set first. The

first group (black data points) represents the electron asymmetry observed when

the first (original) helicity state is negative and its complement state is positive

(helicity state #1 – state #4). The second group (red data points) represents

the asymmetry observed when the first state is positive and the complement

state is negative (helicity state #2 – #3). Both groups were divided into two

subgroups based the target type used. The diamond points on the histogram

represent the data for the NH3 target and the squares for the ND3 target.
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Fig. 3.15: Run Number versus Electron Asymmetry before FC normalization.
The black and red points represent reconstructed electron asymmetry for the
helicity 1-4 pair for ND3 and NH3 target respectively. The blue and green points
represent the helicity pair 2-3 for ND3 and NH3 respectively. The green line
shows the sign of the half wave plane (HWP) and the purple line is the sign of
the target polarization (TPol).

Two lines on the histogram are used to identify the sign of the half wave plate

(HWP) and the target polarization (TPol). The relative spin orientation can be

changed by either inserting a half wave plane (HWP) or by populating a differ-

ent target polarization state with a different RF frequency. One would expect

the asymmetry to change sign if either the HWP is inserted or the target polar-

ization is rotated 180 degrees. As one can see for Figure 3.16 and Figure 3.15,

the electron asymmetry (sign(hel1-hel4), sign(hel3-hel2) and sign(hel42-hel13))

changes sign if the HWP or Target Polarization sign is changed.
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(a) NH3, Tpol>0 and HWP>0.

(b) NH3, Tpol<0 and HWP>0.

Fig. 3.16: W versus (NEShel42 − NEShel13). The electron asymmetry
(sign(hel42-hel13)) changes sign when the HWP or Target Polarization sign
is changed.

The un-normalized reconstructed electron asymmetry has been calculated as:

ANES =
NEShel1,hel2 −NEShel4,hel3

NEShel1,hel2 + NEShel4,hel3
, (3.24)

72



CHAPTER 3. DATA ANALYSIS

and normalized by the Faraday cup

AFCnormalized
NES =

NEShel1,hel2

FChel1,hel2 − NEShel4,hel3

FChel4,hel3

NEShel1,hel2

FChel1,hel2 + NEShel4,hel3

FChel4,hel3

. (3.25)

Fig. 3.17: Run Number versus Electron Asymmetry after applying FC normal-
ization. The black and red points represent the reconstructed electron asym-
metry for the helicity 1-4 pair for ND3 and NH3 target respectively. The blue
and green points are the helicity pair 2-3 for ND3 and NH3 respectively. The
green line shows the sign of the half wave plane (HWP) and the purple line is
the sign of the target polarization (TPol).
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3.3.3 Semi-Inclusive Asymmetries

The asymmetries from semi-inclusive pion electroproduction using proton or

deuteron targets can be written in terms of the difference of the yield when

the electron spin is parallel and antiparallel to the spin of the nucleon. There

are four combinations of semi-inclusive asymmetries: Aπ+

NH3
, Aπ−

NH3
, Aπ+

ND3
and

Aπ−
ND3

Aπ+

NH3
=

N↑↑
NH3,π+ −N↑↓

NH3,π+

N↑↑
NH3,π+ + N↑↓

NH3,π+

(3.26)

Aπ−

NH3
=

N↑↓
NH3,π− −N↑↓

NH3,π−

N↑↑
NH3,π− + N↑↓

NH3,π−

(3.27)

Aπ+

ND3
=

N↑↓
ND3,π+ −N↑↓

ND3,π+

N↑↑
ND3,π+ + N↑↓

ND3,π+

(3.28)

Aπ−

ND3
=

N↑↓
ND3,π− −N↑↓

ND3,π−

N↑↑
ND3,π− + N↑↓

ND3,π−

, (3.29)

where N↑↓
NH3,π+,π−(N↑↑

NH3,π+,π−) and N↑↓
ND3,π+,π−(N↑↑

ND3,π+,π−) represent the num-

ber of π+ and π− hadrons detected in the final state with the scattered electron,

when the spin of the initial electron beam was antiparallel (parallel) to the spin

of the proton and neutron respectively.

The kinematic coverage for the events used in the measured asymmetries are

shown on Figure 3.18 and Figure 3.19. The semi-inclusive asymmetries are

listed in Table 3.3. The first group Ahel1−hel4 represents the asymmetry mea-

sured when the first original electron spin (hel1) is antiparallel to the target

nucleon spin and its complement state (hel4) is parallel, whereas the second

group Ahel2−hel3 represents measuring the SIDIS asymmetry when the first he-
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licity state is parallel (hel2) and its complement state is antiparallel to the spin

of the nucleon. For the final measurement, the two groups are combined into

one Ahel42−hel13 set. Instead of looking at original and complement electron

helicity states, they have been combined into the positive (hel42) and negative

(he13) helicity states, which are parallel and antiparallel to the spin of the tar-

get nucleon respectively.

Fig. 3.18: Invariant Mass versus Q2.

The ratio of the combined semi-inclusive deep inelastic asymmetries (Araw)

from Table 3.3, for two different torus settings have been corrected for the elec-

tron reconstruction efficiency. The Figure 3.20 represents the asymmetry ratios

before and after electron reconstruction efficiency corrections. The ratios have

been calculated for each target and charged pion type. The SIDIS asymmetries

before and after the correction are statistically the same. The result indicates

that the electron reconstruction efficiency does not change the asymmetries.

The data have been combined for each target type and asymmetries measured
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Fig. 3.19: Missing Mass.

Target type,
Beam Torus

Ahel1−hel4 × 10−4 Ahel2−hel3 × 10−4 Araw × 10−4

NH3, B>0, π+ −139.84 ± 81.52 143.15 ± 81.78 136.2 ± 57.74
NH3, B<0, π+ −223.76 ± 117.10 247.65 ± 116.59 237.69 ± 82.65
ND3, B>0, π− −6.37 ± 188.73 −98.11 ± 188.03 9.21 ± 127.22
ND3, B<0, π− −63.73 ± 105.14 −30.34 ± 6085.54 12.37 ± 71.10
NH3, B>0, π− −155.45 ± 128.21 −72.55 ± 128.92 35.11 ± 90.91
NH3, B<0, π− 9.60 ± 119.31 72.94 ± 119.36 32.39 ± 84.38
ND3, B>0, π+ −76.59 ± 126.60 110.28 ± 126.13 92.25 ± 85.38
ND3, B<0, π+ −29.22 ± 107.53 123.98 ± 106.86 92.25 ± 85.38

Table 3.3: Run Number versus SIDIS Asymmetry for Each Type Target mate-
rial and Beam Torus.

for two xB values (Table 3.4). The SIDIS asymmetries were calculated for the

following kinematic range: electron scattering angle 17.5 < θe < 18.5, electron

momentum 2.55 GeV<Pe<2.75 GeV, invariant mass 1.6 GeV<W<1.8 GeV and

momentum transferred square 0.9 GeV2<Q2<1.3 GeV2.

In addition to xB, the data have been subdivided according to the fraction

energy of the observed final state pion(z). Aπ+,raw
NH3

asymmetries for two z are
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Fig. 3.20: The ratio of the SIDIS asymmetries for two torus field settings
Araw(B>0)
Araw(B<0) versus target and the charged pion type. The black squares rep-
resent the data before electron reconstruction efficiency and the red data - after
electron reconstruction efficiency has been applied.

SIDIS Asymmetry xB = 0.3 xB = 0.4

Aπ+,raw
NH3

(150.08 ± 65.96)× 10−4 (217.20 ± 69.06)× 10−4

Aπ−,raw
ND3

(39.04 ± 81.44)× 10−4 (91.90 ± 96.14)× 10−4

Aπ−,raw
NH3

(100.81 ± 83.49)× 10−4 (−23.98 ± 94.92)× 10−4

Aπ+,raw
ND3

(53.17 ± 74.89)× 10−4 (85.17 ± 82.97)× 10−4

Table 3.4: SIDIS Asymmetries for xB = 0.3 and xB = 0.4.

shown in Table 3.5.
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z xB = 0.3 xB = 0.4
0.4 (125.62 ± 81.92)× 10−4 (165.81 ± 86.76)× 10−4

0.7 (140.32 ± 158.98)× 10−4 (238.34 ± 156.79)× 10−4

Table 3.5: Aπ+,raw
NH3

SIDIS Asymmetry.

3.3.4 Dilution Factor

To exclude the contributions of polarized nucleons from the non-hydrogen nu-

clei in the ammonia target (Nitrogen) and the cooling material of the target

(Helium) cell to the semi-inclusive rates, the measured raw double spin asym-

metries have to be divided by a dilution factor. The dilution factor accounts for

the fraction of events coming from the desired polarized target nucleon. The

dilution factors are calculated by combining the data from runs using different

target types. During the EG1b experiment, several runs were taken with Car-

bon C12 and an empty target cell (He). All the runs in this thesis used liquid

Helium as the coolant during the experiment. The Carbon and empty target

runs were used to estimate the dilution of the data by the noise attributed to

the interaction of the incident electron beam with the Nitrogen or Helium nu-

cleons present in the target cell [37].

In order to calculate the dilution factor, we need to define the number of counts

Nhel13,hel24
A,C,MT with beam helicity negative and positive for ammonia, Carbon and

empty target runs. All are weighted by the corresponding gated Faraday cup

counts [38]. Normalized rates are defined as

nC,MT =
N+

C,MT + N−
C,MT

FC+ + FC− (3.30)
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and

nA =
1

2
(

N+
A

FC+
+

N−
A

FC− ), (3.31)

where nC is the rate from a Carbon target, nMT is from an empty target and

nA is from one of the NH3 or ND3 ammonia targets.

The counts for all four targets (empty, Carbon and ammonia) can be expressed

as the sum of counts from the entrance and exit window foils (ρF , lF , σF ),

liquid Helium coolant (ρHe, lHe, σHe), Carbon(ρC , lC , σC), Nitrogen (ρN , lN ,

σN), Hydrogen (Deuterium) (ρH(D), lH(D), σH(D)).

nMT = ρF lF σF + ρHeLσHe = fρC lCσC + ρHeLσHe, (3.32)

nC = ρF lF σF + ρC lCσC + ρHe(L− lC)σHe, (3.33)

and

nA = ρF lF σF + ρHe(L− lA)σHe + ρAlA(σN + 3σH(D)), (3.34)

where f = ρF lF σF

ρC lCσC
, σH(D) represents the Hydrogen (Deuteron) cross section.

Using above system of equations, we define two new spectra to account for

the Carbon target and the difference in the amount of Helium in ammonia

targets vice versa the Carbon target. For a target cell with length L and the

Carbon target with length lC , the Carbon and LHe contributions can be written
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following way:

n′
12C =

L

L + flC
nC −

L− lC
L + flC

nMT = ρC lCσC (3.35)

and

n′
4He =

(1 + f)lHe

L + flC
nMT −

flHe

L + flC
nC = ρHelHeσHe, (3.36)

where n′
12C is the rate from the Carbon nucleus only and n′

He is the rate from

liquid Helium only. The length and densities are listed in Table 3.6.

We need to establish how the rate from the Carbon target is related to the

rate from the N15 in NH3 and ND3. The cross section for N15 can be written

in terms of the cross sections on C12 target material (σ12C) and on a bound

neutron in N15 (σ′
n).

σ15N ≈
7

6
σ12C + σ′

n =

(
7

6
+

σ′
n

σ12C

)
σ12C . (3.37)

It is assumed that when the scattering occurs on protons inside the target

material, the ratio of σ′n
σ12C

= 0 and when the reaction happens on neutrons

inside the target, the value of the ratio is σ′n
σ12C

= 1
6 , because there are six bound

neutrons in C12 [38].

Using above quantities the background represented by the number of counts

due to the non-hydrogen and non-deuterium parts of the ammonia target can
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be expressed as

nB =

[
ρAlA
ρC lC

(
7

6
+

σ′
n

σ12C

)
+ f

]
n′

12C + (L− lA)n′
4He

= nMT + lA

[
ρA

ρC lC

(
7

6
+

σ′
n

σ12C

)
n′

12C − n′
4He

]
. (3.38)

The dilution factor df is

df =
nA − nB

nA
. (3.39)

The dilution factor is compared below in Table 3.8:

Item Description Value
ρF lF Density times target length

for empty target.
Al: 167 µm; 0.045 g/cm2. Kapton: 384
µm; 0.055 g/cm2. Total=Al + Kap-
ton=0.0996 g/cm2

ρC lC Density times target length
for Carbon target.

0.498 g/cm2

f The ratio of counts from
foils to the C12 slab in the
Carbon target.

0.200

ρHe He density. 0.145 g/cm3

L The length of the target cell
from the entrance to exit
foil.

1.90 cm

ρC C12 density. 2.17 g/cm3

lC Carbon target length. 0.23 cm
ρNH3 NH3 density 0.917 g/cm3

ρND3 ND3 density 1.056 g/cm3

lA Ammonia target length. 0.6 cm

Table 3.6: Length and density values for different types of target material
reproduced from the EG1b experiment [38].
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The fractional energy of the observed
final state hadron(z)

Dilution Factor(df )

NH3, π+ && z = 0.4 0.160 ± 0.02
NH3, π+ && z = 0.7 0.152 ± 0.03

Table 3.7: Calculated dilution Factor for NH3 target type.

Reaction Dilution Factor(df )
Resonance region 0.11 - 0.13
Inclusive 0.14 - 0.17
Semi-Inclusive 0.122 - 0.182

Table 3.8: Dilution Factor compared with other results [16] [37].

3.3.5 Fragmentation ∆Rπ++π−
np

A test of fragmentation can be performed by calculating the ratio of the differ-

ence of polarized to unpolarized cross sections for proton and neutron targets

∆Rπ++π−
np and showing that it is independent of z. The fragmentation function

can be written following way

∆Rπ++π−

np (x, z, Q2) =
∆σπ++π−

p −∆σπ++π−
n

σπ++π−
p − σπ++π−

n

=
∆σπ++π−

p

σπ++π−
p − σπ++π−

n

− ∆σπ++π−
n

σπ++π−
p − σπ++π−

n

(3.40)

=
(∆u + ∆ū)− (∆d + ∆d̄)

(u + ū)− (d + d̄)
(x, Q2)

=
gp
1 − gn

1

F p
1 − F n

1

(x, Q2).

The left side of the fragmentation function is calculated using the measured

double spin asymmetries for the ammonia targets. However, the right side can
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be extracted using the model.

Fig. 3.21: xB versus ∆Rπ++π−
np . Black data points represent the Model, red and

green data points represent fragmentation function for z = 0.4 and z = 0.7
respectively.

z xB = 0.3 xB = 0.4
0.4 14 % 12 %
0.7 21 % 32 %

Table 3.9: Statistical Z - test for the data comparison with the model.

The pion asymmetries, Aπ−
NH3, A

ND3π+ , Aπ−
ND3 are statistically consistent with

zero as shown in Table 3.4. As a result, the contributions from ∆σπ−
p , ∆σπ+

n and
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∆σπ−
n to the fragmentation function test (Eq. 1.54) are negligible. Only the first

term is non-zero in ∆Rπ++π−
np . After correcting the cross section difference for

the target polarization, beam polarization, and dilution factor, the ∆Rπ++π−
np

function for two values of z and xB is shown on Figure 3.21 and is compared

to the Model.

3.3.6 Systematic errors

Systematic errors from the experimental setup and the cuts used for parti-

cle identification and background elimination were estimated. The systematic

errors associated with the electromagnetic cuts and fiducial cuts for electron

identification were calculated by comparing the SIDIS asymmetries before and

after cuts were applied. Systematic effects related to the dilution factor and

polarization were estimated following way: First, the SIDIS asymmetries were

calculated for the standard values of the dilution factor and polarization. Then

asymmetries were recalculated by changing the value of the each parameter by

the amount of its uncertainty. The difference between these two values is the

systematic effect. The systematic errors for the SIDIS asymmetries are shown

in Table 3.10.

Source Systematic Error
Geometrical and timing cuts 5.80× 10−2

Electromagnetic calorimeter cut 4.07× 10−2

Dilution Factor 5.03× 10−2

Target and beam polarization 1.10× 10−2

Total 8.76× 10−2

Table 3.10: The systematic errors for the Aπ+

NH3
asymmetry.
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Results

The final results are presented in this section. They have been obtained by

analyzing the data collected in 2000 - 2001 at Thomas Jefferson National Labo-

ratory using a longitudinally polarized electron beam on a longitudinally polar-

ized Hydrogen (15NH3) and Deuterium (15ND3) targets. The incident electron’s

energy was 4.2 GeV. The CEBAF Large Acceptance Spectrometer (CLAS) was

used for particle detection. The measurements were made for the kinematic

region where xB ≥ 0.3 and momentum transferred squared between 0.9 and 1.3

GeV2. The SIDIS asymmetries were measured for four different values of xB.

The corrected measured semi-inclusive deep inelastic asymmetries Aπ+

NH3, Aπ−
NH3,

Aπ+

ND3 and Aπ−
ND3 are shown below on Figures 4.1, 4.2, 4.3 and 4.4 respectively

and compared to the asymmetries measured by the HERMES experiment. The

measured SIDIS asymmetries on the proton and deuterium targets are in good

agreement within their combined uncertainties. The SIDIS asymmetries for

longitudinally polarized Hydrogen (15NH3) and Deuterium (15ND3) targets are

listed in Table 4.1 for four values of xB. The asymmetries have been corrected

for the target and beam polarization and dilution factor from ref[39].
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xB Aπ+

NH3 ± stat. ± syst. Aπ−
NH3 ± stat. ± syst.

0.30 0.1644 ± 0.0504 ± 0.0753 0.1378 ± 0.0745 ± 0.0751
0.35 0.2733 ± 0.0400 ± 0.0764 0.1183 ± 0.0583 ± 0.0750
0.40 0.3308 ± 0.0499 ± 0.0772 −0.0917 ± 0.0753 ± 0.0749
0.45 0.2521 ± 0.1257 ± 0.0761 −0.1908 ± 0.1942 ± 0.0755
xB Aπ+

ND3 ± stat. ± syst. Aπ−
ND3 ± stat. ± syst.

0.30 0.2273 ± 0.0317 ± 0.0809 0.1286 ± 0.0320 ± 0.0767
0.35 0.0209 ± 0.0314 ± 0.0747 0.1904 ± 0.0319 ± 0.0791
0.40 0.3368 ± 0.0322 ± 0.0877 0.1080 ± 0.0330 ± 0.0761
0.45 0.2408 ± 0.0377 ± 0.0816 0.5125 ± 0.0392 ± 0.1024

Table 4.1: Semi-inclusive asymmetries on the proton and deuterium targets
(Aπ+,π−

NH3 and Aπ+,π−

ND3 ).
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Fig. 4.1: xB versus Aπ+

NH3 SIDIS Asymmetry. The solid black squares are mea-
surements from ref[11] and the solid red diamonds represent SIDIS asymmetries
measured using the data collected during the EG1b experiment. The error bar
lines represent statistical uncertainty and the risers systematic uncertainty.
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Fig. 4.2: xB versus Aπ−
NH3 SIDIS Asymmetry. The solid black squares are mea-

surements from ref[11] and the solid red diamonds represent SIDIS asymmetries
measured using the data collected during the EG1b experiment. The error bar
lines represent statistical uncertainty and the risers systematic uncertainty.
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Fig. 4.3: xB versus Aπ+

ND3 SIDIS Asymmetry. The solid black squares are mea-
surements from ref[11] and the solid red diamonds represent SIDIS asymmetries
measured using the data collected during the EG1b experiment. The error bar
lines represent statistical uncertainty and the risers systematic uncertainty.
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Fig. 4.4: xB versus Aπ−
ND3 SIDIS Asymmetry. The solid black squares are mea-

surements from ref[11] and the solid red diamonds represent SIDIS asymmetries
measured using the data collected during the EG1b experiment. The error bar
lines represent statistical uncertainty and the risers systematic uncertainty.

90



Bibliography

[1] J. Ashman et. al., (EMC Collaboration), Nucl. Phys. B328 (1989).

[2] J. Ashman et. al., (EMC Collaboration), Nucl. Phys. B206, 364 - 370

(1988).

[3] J. Ellis, and M. Karline, Phys. Lett. B341, pg 396 (1965).

[4] B. Hommez. A Study of Fragmentation Processes in the HERMES

Experiments using a Ring Imaging Cherenkov Detector. Doctoral dis-

sertation, University of Gent, 2003.

[5] E. Bloom et. al., SLAC Group A, reported by W. K. Panofsky in Int.

Conf. on High Energy Phys., Vienna, CERN, Geneva p.23 (1968).

[6] F. E. Close, An Introduction to Quarks and Patrons. (London, UK:

Academic Press Inc. LTD., 1979).

[7] G. Dissertori, I. K. Knowles, and M. Schmelling, Quantum Chromody-

namics: High Energy Experiments and Theory. (Oxford, UK: Oxford

University Press, 2003).

[8] R. G. Roberts, The structure of the proton. Cambridge Monographs on

Mathematical Physics. (Cambridge, UK: Cambridge University Press,

1990).

91



BIBLIOGRAPHY

[9] V. V. Anisovich, M. N. Kobrinsky, J. Nyiri, and Yu. M. Shabelski,

Quark Model and High Energy Collisions. (World Scientific Publishing

Co. Pte. Ltd., 2004).

[10] J. M. Camalich, L. S. Geng, and M. J. Vicente Vacas, The lowest-lying

baryon masses in covariant SU(3)-flavor chiral perturbation theory.

arXiv:1003.1929v1 [hep-lat] (2010).

[11] A. Airapetian et. al., (The HERMES Collaboration), Phys. Rev. Lett.

92, 012005 (2004).

[12] E. Christova and E. Leader, Semi-inclusive production-tests for

independent fragmentation and for polarized quark densities. hep-

ph/9907265 (1999).

[13] T. D. Averett et. al., Nucl. Instr. Meth. A427/3, 440-454 (1999).

[14] D. G. Crabb and W. Meyer, Annu. Rev. Nucl. Part. Sci. 47, 67-109

(1997).

[15] S. Chen, First Measurement of Deeply Virtual Compton Scattering

with a Polarized Proton Target. Doctoral dissertation, Florida State

University, Tallahasee, FL, 2006.

[16] Y. A. Prok, Measurement of The Spin Structure Function g1(x, Q2) of

the Proton in The Resonance Region. Doctoral dissertation. University

of Virginia, Richmond, VA, 2004.

[17] G. Baum G et. al., A proposal for a Common Muon and Proton Ap-

paratus for Structure and spectroscopy, CERN/SPSLC/96-14(1996).

92



BIBLIOGRAPHY

[18] C. D. Keith et. al., Nucl. Instr. Meth. A501, 327-339 (2003).

[19] V. Burkert, B. Mecking, D. Day, J. McCarthy and R. Minehart, Po-

larized Target Experiments Using the CEBAF Large Acceptance Spec-

trometer. CLAS - Note 90 - 04.

[20] K. V. Dharmawardane et. al., (The CLAS Collaboration), Phys. Lett.

B641, 11 (2006).

[21] R. H. Fatemi, The Spin Structure of The Proton in The Resonance Re-

gion. Doctoral dissertation, University of Virginia, Sterling, VA, 2002.

[22] M. D. Mestayer et. al., Nucl. Instr. Meth. A449, 81-111 (2010).

[23] G. Adams and V. D. Burkert et al. (The CLAS Collaboration), Nucl.

Instr. Meth. A465, 414-427 (2001).

[24] E. S. Smith et. al., Nucl. Instr. Meth. A432, 265-298 (1999).

[25] H. A. Grunder et. al., The Continuous Electron Beam Accelerator Fa-

cility. CEBAF-PR-87-017 (1987).

[26] W. Diamond. The Injector for the CEBAF cw Superconducting Linac.

CEBAF-PR-87-011 (1987).

[27] J. Hansknecht and M. Poelker, Phys. Rev. ST Accel. Beams 9, 063501

(2006).

[28] D. A. Engwall et. al., A spin manipulator for electron accelerators.

CEBAF-PR-92-019 (1992).

[29] E. Grn, E. Krger et. al., Geophysical Research Lett. 24, 2171 (1997).

93



BIBLIOGRAPHY

[30] B. A. Raue, L. H. Kramer, R. M. Chasteler, S. J. Gaff, J. Kelly, C. Lay-

mon, M. Spraker, H. Weller, D. S. Carman, S. Boiarinov, V. Burkert

and A. Freyberger, Bull. Am. Phys. Soc. 43, 1543 (1998).

[31] K. Nakamure et. al., The Review of Particle Physics. Particle Data

Group. J. Phys. G 37, 075021 (2010).

[32] M. Osipenko, A. Vlassov and M. Taiuti, Matching between the electron

candidate track and the Cherenkov counter hit. CLAS-NOTE 2004-020

(2004).

[33] C. Lanczos, SIAM Journal of Numerical Analysis, B1, 86 (1964).

[34] K. Park, V. D. Burkert and W. Kim (The CLAS Collaboration), Phys.

Rev. C77, 015208 (2008).

[35] J. Pierce, Pion Identification code,

From EG1 Hall-B, WWW Document,

(http://www.jlab.org/Hall-B/secure/eg1/EG2000/josh/pion.cc).

[36] Unitary Isobar Model, MAID2007, WWW Document,

(http://wwwkph.kph.uni-mainz.de/MAID//maid2007/maid2007.html).

[37] R. G. Fersch, Measurement of Inclusive Proton Double Spin Asym-

metries and polarized Structure Functions. Doctoral dissertation. The

College of William and Mary, Williamsburg, VA (2008).

[38] S. E. Khun, Dilution Factor for Exclusive Channels. Old Dominion

University, Norfolk, VA (2010).

94



BIBLIOGRAPHY

[39] P. Bosted et. al., Interpolated model calculated dilution factors for

EG1b directly from radiated cross-sections, WWW Document,

(http://www.jlab.org/Hall-B/secure/eg1/EG2000/fersch/DILUTION/

dilutionmodel/) (2007).

95


	Title
	Acknowledgement
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Abstract

	1 Theory
	1.1 The Standard Model
	1.2 The Quark Parton Model
	1.3 Lattice QCD
	1.4 Semi-Inclusive Deep Inelastic Scattering
	1.4.1 Fragmentation Independent
	1.4.2 Independent Fragmentation Function Test


	2 Experimental Setup
	2.1 Target
	2.1.1 Introduction
	2.1.2 Polarized Target Materials

	2.2 The CEBAF Large Acceptance spectrometer
	2.2.1 Introduction
	2.2.2 The Torus Magnet
	2.2.3 Drift Chambers
	2.2.4 Cherenkov detector
	2.2.5 Scintillators
	2.2.6 Calorimeter

	2.3 The Continuous Electron Beam Accelerator Facility (CEBAF) at JLAB

	3 Data Analysis
	3.0.1 The CLAS Data Selection
	3.1 Particle Identification
	3.1.1 Electron Identification
	3.1.2 Pion Identification

	3.2 Event Reconstruction Efficiency
	3.2.1 Inclusive Electron Event Reconstruction Efficiency
	3.2.2 Exclusive and Semi-Inclusive Event Reconstruction Efficiencies

	3.3 Asymmetries
	3.3.1 Beam Charge Asymmetry
	3.3.2 Electron Asymmetry
	3.3.3 Semi-Inclusive Asymmetries
	3.3.4 Dilution Factor
	3.3.5 Fragmentation Rnp+ + -
	3.3.6 Systematic errors


	4 Results
	Bibliography

