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Preface

In the early 1960s, Edward M. Purcell wrote an innovative electromagnetism text (Elec-
tricity and Magnetism: Berkeley Physics Course Volume 2, published by McGraw-Hill,
now in its second edition) in which he used relativistic arguments to derive the existence
of magnetism and radiation. This approach to the physics of moving charges brings the
subject to life, illustrating the physical origin of many important electrodynamic phenom-
ena in a pictorial way. Furthermore, this approach is mathematically easier than the more
traditional approach based on the Biot-Savart law, Ampere’s law, and Maxwell’s equations.

Unfortunately, Purcell’s textbook is written at a level that is too advanced for the
typical introductory physics course. In these notes I have therefore tried to extract the
essential relativistic arguments of Purcell’s approach, simplify them somewhat, and present
them in a format that could be incorporated into any calculus-based introductory course
taught out of a more typical textbook. Each of the five “lessons” can be covered in about
one class session. Students should already be familiar with electrostatic fields and Gauss’s
law, basic magnetic phenomena such as forces between parallel currents, and the rudiments
of relativity (including reference frames, length contraction, and the speed of light as a limit
for transmitting information). No prior knowledge of magnetic fields, electrodynamics,
or more advanced notions of relativity (Lorentz transformation, relativistic dynamics) is
required.

Although nearly every idea in these notes is borrowed from Purcell’s book, the illustra-
tions have all been redrawn and the text is entirely my own. Instructors have my permission
to duplicate these notes for classroom use as needed. Comments and suggestions from both
instructors and students would be most welcome.

Daniel V. Schroeder
2 January 1999

Copyright c⃝1999 by Daniel V. Schroeder
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Lesson 1

Transformation of the Electric Field

If you have an electric field in one reference frame, how does it look from a different
reference frame, moving with respect to the first? This question is crucial if we are to
understand fields created by moving sources. For now, let us restrict ourselves to the
special case where the sources that create the field are at rest with respect to one of the
reference frames. So our question is: Given the electric field in the frame where the sources
are at rest, what is the electric field in some other frame?

Our fundamental assumption will be that knowing the electric field at some point (in
space and time) in the rest frame of the sources, and knowing the relative velocity of the
two frames, gives us all the information we need to calculate the electric field at the same
point in the other frame. In other words, the electric field in the other frame does not
depend on the particular distribution of the source charges, only on the local value of the
electric field in the first frame at that point. Basically, we’re taking the electric field very
seriously, assuming that it is a complete representation of the influence of the far-away
charges.

1.1 A Uniform Electric Field

Let us begin with a very simple situation: a charged parallel-plate capacitor, whose electric
field (in its rest frame) is uniform between the plates and zero outside (neglecting edge
effects). What is the electric field of this charge distribution in a reference frame where it
is in motion?

Suppose first that the motion is in a direction parallel to the plates (see figure 1.1).
The plates are then shorter by a factor of

√

1 − (v/c)2 than they are in their rest frame,
but the distance between them is the same. The total charge on each plate is also the same,
since charge is a frame-independent quantity. The charge per unit area on the plates is
therefore larger than in the rest frame by a factor of 1/

√

1 − (v/c)2, and we will therefore
find that the field between them is stronger by this factor.

Let’s back up and derive this carefully. First consider the electric field of a single,
infinite plate of positive charge, moving parallel to itself. What can we say about the value
of this field? It must be uniform both above and below the plate, since it is uniform in its
rest frame, and we are assuming that knowing the field in one frame is enough to know it in
the other. But we cannot (yet) rule out the possibility that the field of the plate could have
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Figure 1.1. Two oppositely charged parallel plates produce a uniform electric field,
even when they are moving as shown. The Gaussian pillbox can be used to find the
strength of the field.

a nonzero component along the direction of motion, as shown in figure 1.2a. However, even
if this were the case, the field of an infinite plate of negative charge would have to be equal
and opposite to the field of the positive plate (as shown in figure 1.2b), since combining
the plates must cancel the fields exactly (neutral objects produce no fields). If we separate
the plates of charge, the horizontal components of their fields still cancel exactly, and we
are left with a uniform vertical field between the plates and zero field outside, as shown in
figure 1.1.

+ + + + + + + + + + + +

(a) (b)

− − − − − − − − − − − −

E⃗

v⃗

E⃗

v⃗

Figure 1.2. An infinite sheet of positive charge, moving to the right, could conceiv-
ably create a field like that shown in (a). But even if it did, a sheet of negative charge
would have an opposite field, as in (b).

Now imagine a Gaussian pillbox that straddles one of the plates, with one face outside
and one face inside the region of nonzero electric field (see figure 1.1). Applying Gauss’s
law to this pillbox, you can now show that the magnitude of the electric field between the
plates is

|E⃗′| =
σ′

ϵ0
, (1.1)

where ′ denotes a value measured in the frame where the plates are moving, and σ is the
surface charge density of the positive plate. Since the plates are length-contracted by a
factor of

√

1 − (v/c)2, the surface charge density in the primed frame is related to its value
in the rest frame of the plates by

σ′ =
σ

√

1 − (v/c)2
. (1.2)
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But the electric field in the rest frame has magnitude σ/ϵ0, and the field points in the same
direction in both frames, so we can conclude that

E⃗′ =
E⃗

√

1 − (v/c)2
(motion ⊥ to E⃗). (1.3)

This is for motion in a direction parallel to the plates, that is, perpendicular to the direction
of E⃗. Notice that the electric field in the primed frame is stronger than in the unprimed
frame.

What happens if the motion is in the direction perpendicular to the plates, that is,
parallel to E⃗? In this case the length contraction does not affect the size of the plates,
though it does reduce the distance between them. But the distance between a pair of
closely spaced, uniformly charged plates does not affect the strength of the field between
them. That is, for motion in a direction parallel to E⃗,

E⃗′ = E⃗ (motion ∥ to E⃗). (1.4)

Finally, consider the most general case where the motion is in some diagonal direction
relative to the field. In this case, we can consider the field to be a superposition of a
field in the parallel direction and a field in the perpendicular direction, each generated by
its own set of appropriately oriented plates, as shown in figure 1.3. (Remember that we
assume that the precise nature of the source of the field is irrelevant.) The two sets of
plates are then length-contracted as described above, and the two components of E⃗ are
affected accordingly:

E′
⊥ =

E⊥
√

1 − (v/c)2
; E′

∥ = E∥. (1.5)

(Here E⊥ refers to the components of E⃗ perpendicular to the motion, and E∥ is the com-
ponent of E⃗ parallel to the motion.) These are our final equations for the transformation
of the electric field between reference frames. It is important to remember, however, that
they apply only if the source of the field is at rest in the unprimed frame. Since there is
always some reference frame in which any particular source is at rest, these equations are
sufficient for solving a wide variety of problems.
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Figure 1.3. If the electric field points in a diagonal direction relative to the motion,
it can be considered a superposition of a parallel field and a perpendicular field, each
generated by a set of appropriately oriented plates.



6 Lesson 1 Transformation of the Electric Field

Notice that the transformation law for the electric field vector is quite different from
the transformation law for ordinary displacement vectors (which are contracted in the
direction along the motion and unchanged in the perpendicular directions). In particular,
it would be wrong to think of the electric field vector as a physical object that gets length-
contracted just like any other object. In fact, the field vector is longer, not shorter, in the
primed frame. Furthermore, the stretching occurs in the direction perpendicular to the
motion, while the parallel component is unchanged.

Exercise 1.1. Imagine that in a certain region of space there is a uniform electric
field whose magnitude, in the earth’s reference frame, is 100 volts/meter, and whose
direction, in the earth’s reference frame, is inclined 45◦ with respect to the x axis.
Find the magnitude and direction of the field in a reference frame moving in the
x direction at 9/10 the speed of light with respect to the earth.

Equations (1.5), by the way, are sufficient to prove that the electric field of a single
plane of charge does not look like figure 1.2; it must point perpendicular to the plane, even
in a reference frame where the plane is moving.

1.2 The Field of a Moving Point Charge

The most important application of equations (1.5) is to the field of a single point charge,
moving with constant velocity. In its rest frame the electric field of a positive point charge
has the same strength in all directions and points directly away from the charge. What
does this field look like in some other reference frame?

In applying equations (1.5) to a nonuniform electric field we have to be very careful,
since we must keep track not only of what the value of the field is, but also where it has
this value. Let us therefore imagine that our point charge is surrounded by a spherical
shell—spherical, that is, in the rest frame of the particle, where it is also at rest. In our
reference frame, however, both the particle and its sphere are moving. Length contraction
therefore says that the sphere is flattened into a spheroid, as shown in cross-section in
figure 1.4.

Now consider the value of the electric field at any point on the surface of the sphere.
Let x and y be the components of the displacement, in the rest frame of the charge, from
the charge to this point, measured parallel and perpendicular to the direction of motion, as
shown in the figure. Since the field in the rest frame of the charge points directly away from
the charge, its components are in the same ratio as the components of the displacement:

Ey

Ex
=

y

x
. (1.6)

In our reference frame, where the charge is moving, the displacement x′ in the direction of
motion is length-contracted:

x′ =
√

1 − (v/c)2 x (1.7)
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Figure 1.4. (a) A point charge at rest, surrounded by an imaginary sphere. The
electric field at any point on the sphere points directly away from the charge. (b) In
a reference frame where the charge and the sphere are moving to the right, the sphere
is length-contracted but the vertical component of the field is stronger. These two
effects combine to make the field again point directly away from the current location
of the charge.

(while the y component of the displacement is the same in both frames). However, accord-
ing to the results of the previous section, the y component of the field is enhanced by a
similar factor:

E′
y =

Ey
√

1 − (v/c)2
(1.8)

(while the x component of the field is the same in both frames). The ratio of the field
components is therefore

E′
y

E′
x

=
Ey

Ex

√

1 − (v/c)2
=

y

x
√

1 − (v/c)2
=

y′

x′ . (1.9)

In other words, the field in the primed frame points directly away from the charge, just as
in the unprimed frame.

A sketch of the electric field of a point charge moving at constant velocity is shown in
figure 1.5. The faster the charge is moving, the more noticeable the enhancement of the
perpendicular component of the field becomes. If the speed of the charge is much less than
the speed of light, this enhancement is often negligible. But in the following lesson we’ll
see that under certain circumstances, it is crucially important even at low velocities.
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+

Figure 1.5. The electric field of a point charge moving to the right with a constant
velocity, 4/5 the speed of light.



Lesson 2

Magnetic Forces

I experienced a miracle . . . as a child of four or five when my father showed
me a compass. —Albert Einstein

We are now ready to understand the origin of magnetic forces. I assume that you are
already familiar with the basic phenomena of magnetism: permanent magnets with “poles”
that either attract or repel; magnetic forces exerted on moving charged particles; and
magnetic forces exerted by electric current running through a wire. Because permanent
magnets are actually rather complicated, I’ll start with the simpler case of a magnetic
force exerted on a moving charged particle, by a current-carrying wire.

2.1 A Charge Moving Parallel to a Wire

To begin, I would like to construct a model of what is happening at the microscopic level
when current flows through a wire. This model may not be realistic in all its details, but
it does turn out to contain all the features of real currents in real wires that are essential
for our purpose.

Suppose you have a long wire stretched out horizontally in front of you, with a current
flowing through it toward the right (see figure 2.1). In principle, a current to the right
could be caused by the flow of positive charges to the right, or negative charges to the left,
or some combination of both. (The current is conventionally defined as the net amount of
positive charge that passes a fixed point, moving from left to right in this case. Positive
charge flowing to the left counts as negative current, while the flow of negative charge
counts like positive charge moving in the opposite direction.) You may know that in real
metal wires it is actually negatively charged particles that do the flowing. To avoid having
to keep track of lots of minus signs, however, I will take the moving charges to be positive
in this simplified model.

So we have a bunch of positive charges, flowing to the right. Let’s say that each of
them carries charge q and moves with speed v, and that the average separation between
adjacent charges is ℓ. Meanwhile, assuming that the wire is electrically neutral, it must
contain an equal amount of negative charge. Again for simplicity, let’s assume that each
negatively charged particle has charge −q, and that the negative charges are evenly spaced.
Then the average distance between the negative charges must also be equal to ℓ, as shown
in figure 2.1.

9
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+−

+

+− +− +− +− +− +− +− +− +− v

v

ℓ

Figure 2.1. A simple model of what goes on in a wire. Positive charges, evenly
spaced, move to the right, while an equal number of negative charges remain at rest.
If the wire is electrically neutral, the distance between adjacent positive charges must
be the same as the distance between adjacent negative charges. Meanwhile, a positive
test charge Q moves to the right with the same speed as the positive charges in the
wire.

Suppose now that there is also a positively charged particle, with charge Q, outside
the wire and traveling (initially) in a direction parallel to the current. I’ll refer to this
particle as the test charge. To keep things as simple as possible, let’s take the speed of the
test charge to be v, the same as the speed of the moving charges in the wire. As you can
readily demonstrate in an experiment, the test charge should experience a magnetic force.
How can we derive this result on the basis of what we already know?

So far in these notes I’ve said nothing about the situation where both the source charges
and the test charge are moving. The key to handling this case is to consider what happens
in a different reference frame, where things are simpler. Consider a reference frame where
the test charge is at rest, at least initially (before it starts bending). I will refer to this
reference frame as the test charge frame and the original reference frame as the lab frame.
In the test charge frame the only possible force is the electrostatic force QE⃗, since the
electric field is defined as the force exerted on a unit positive test charge that is at rest.

+
−

+

v
+ + + + + + +

− − − − − − − − − − − −

test charge
(at rest)

ℓ+

ℓ−

Figure 2.2. The same situation as in figure 2.1, but viewed from the reference frame
in which the test charge is initially at rest. Here the positive charges in the wire are
at rest while the negative charges in the wire are moving to the left. The distance
between the negative charges is length-contracted relative to the lab frame, while the
distance between the positive charges is un-length-contracted, so the wire carries a
net negative charge.

The situation in the test charge frame is shown in figure 2.2. The positive charges in
the wire are also at rest, but the negative charges in the wire are moving to the left with
speed v. Now think about length contraction. The negative charges are at rest in the lab
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frame but moving in the test charge frame, so the distance between them is smaller in the
test charge frame than in the lab frame. To be precise, their average separation is now

ℓ− = ℓ
√

1 − (v/c)2. (2.1)

On the other hand, the positive charges are at rest in the test charge frame but moving
in the lab frame, so the opposite applies to them: The distance between them is larger in
the test charge frame than in the lab frame. Their separation in the test charge frame is

ℓ+ =
ℓ

√

1 − (v/c)2
. (2.2)

Both of these effects give the wire a net negative charge in the test charge frame. A
negatively charged wire exerts an attractive electrostatic force on a positively charged
particle, so our test charge is attracted toward the wire, and begins moving toward it.

Relativistic length contraction thus seems to account for the attractive force between
parallel currents, at least in this simplified special case. What if the currents are in opposite
directions? Consider next the same situation, but with the test charge moving to the left
(see figure 2.3). This situation will be more difficult to analyze, since neither the positive
nor the negative charges are at rest in the test charge’s reference frame. The negative
charges are moving with speed v in the test charge frame, so the distance between them
is again

ℓ− = ℓ
√

1 − (v/c)2. (2.3)

To work out the distance between the positive charges, however, is more difficult. First
we must ask what their speed is in the test charge frame. You might think the answer is
2v, since their speed in the lab frame is v and the test charge frame moves with speed v
relative to the lab frame. In fact, the theory of relativity says that the answer is somewhat
less than 2v, although the difference is negligible if v is much less than the speed of light.
Let us make this assumption for simplicity. Then the distance between the positive charges
is contracted by a factor of

√

1 − (2v/c)2 relative to its value in their rest frame, which
in turn (as we saw in equation (2.2)) is larger than ℓ by a factor of

√

1 − (v/c)2. Putting
this all together, we have

ℓ+ =
ℓ

√

1 − (v/c)2
√

1 − (2v/c)2. (2.4)

Now the question is, which is larger—ℓ− or ℓ+? The easiest way to answer this question
is to again use the assumption that v ≪ c, and apply the binomial approximation

(1 + x)p ≈ 1 + px when |x| ≪ 1 (2.5)

to both equation (2.1) and equation (2.4). The expression for ℓ− then becomes

ℓ− = ℓ
(

1 − v2

c2

)1/2
≈ ℓ

(

1 − v2

2c2

)

. (2.6)
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Figure 2.3. The same as figures 2.1 and 2.2, but now the test charge is moving to
the left, and the wire is positively charged in the test charge reference frame.

In the expression (2.4) for ℓ+ we must apply the approximation to both the numerator
and the denominator, and multiply out all the terms:

ℓ+ = ℓ
(

1 − v2

c2

)−1/2(

1 − 4v2

c2

)1/2

≈ ℓ
(

1 +
v2

2c2

)(

1 − 4v2

2c2

)

= ℓ
(

1 − 3v2

2c2
− v4

c4

)

.

(2.7)

Comparing expressions (2.6) and (2.7), you can now see that ℓ+ is less than ℓ−. Thus the
wire is positively charged in the test charge frame.

I hope you can see now how length contraction accounts for both the attraction of
parallel currents and the repulsion of antiparallel currents. Admittedly, we have made
some simplifying assumptions, especially in taking the speed of the charges inside the wire
to be the same as the speed of the test charge. However, the same qualitative conclusion
holds for any values of these speeds, as well as for the case where the current in the wire
is the result of the flow of negative rather than positive charges. The only property of
the wire that matters is the net current. The magnitude of the force is determined by
the strength of the current in the wire, the speed of the outside particle, and the distance
between them.

Exercise 2.1. Consider again the case where the test charge is moving in the
same direction as the charges in the wire, but suppose now that the test charge
is moving more slowly. Argue qualitatively that the test charge again feels an
attractive force, but that this force is weaker in magnitude than before.

Exercise 2.2. Analyze the case where the test charge and the charges in the wire
are moving in opposite directions, with different speeds. Show that the direction
of the force on the test charge is the same as in the special case considered above,
where the speeds were the same. You may assume that both speeds are much less
than the speed of light.
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Exercise 2.3. Argue that if the charge of the test charge is doubled, the force
exerted on it by the wire is also doubled. (Show this for both directions of motion
of the test charge.) What if the test charge is negative?

Exercise 2.4. (For those who have studied relativistic velocity transformations.)
Correct equation (2.4) to be exact no matter how large v is, and show without
making any approximations that ℓ− is larger than ℓ+ in this situation. You will
have to do some algebra.

2.2 A Charge Moving Perpendicular to a Wire

Experiments show that a current-carrying wire exerts a force on a moving charged particle
not only when the particle is moving parallel to the wire, but also when it is moving directly
toward or away from the wire. The qualitative explanation of the force in this case also
involves length contraction, but is less direct. Consider the situation shown in figure 2.4,
where the wire is the same as in the previous section, but the positive test charge is moving
directly toward the wire. Figure 2.5 shows the same situation in the reference frame of
the test charge, where the wire is moving straight down. The negative charges in the wire
are moving straight down with it, and their electric field is symmetrical from side to side.
The positive charges in the wire, however, are moving diagonally in the test charge frame.
I claim that, at the location of test charge, the net electric field of these positive charges
has a nonzero horizontal component, which points to the left.

+
−

+

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

Figure 2.4. Again the wire carries a current of positive charges moving to the right,
but now the test charge is moving directly toward it.

Recall from Section 1.2 that the electric field of a moving point charge is not sym-
metrical, but is instead distorted, being reduced in strength along the direction of motion
and intensified in the transverse directions (see figure 1.5). This distortion is ultimately a
consequence of length contraction, as discussed in Lesson 1. The distorted fields of two of
the individual positive charges are shown in figure 2.5. Notice that at the location of the
test charge, the field of the charge on the right is stronger than that of the charge on the
left. The same would be true for any other pair of symmetrically placed positive charges
in the wire. The net electric field at the test charge’s location therefore has a nonzero
horizontal component, pointing to the left. (The vertical component of the net field turns
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Figure 2.5. The same situation as in figure 2.4, but viewed in the test charge’s frame
of reference. The negative charges in the wire are moving straight down, while the
positive charges are moving diagonally. Since the electric field of a moving charge
is weaker along the direction of its motion and stronger in the transverse directions,
there is a net horizontal electric field at the location of the test charge.

out to be zero when the negative charges are taken into account, although this is not easy
to see.)

Exercise 2.5. Draw an analogous sketch for the case where the test charge is
moving directly away from the wire, and argue that in this case there is a net force
on it toward the right.

2.3 The Lorentz Force Law

Figure 10.9 summarizes the qualitative results of the previous two sections. A test charge
located near a current-carrying wire feels a velocity-dependent “magnetic” force. When
the current flows to the right and the test charge is below the wire and positively charged,
this force is in a direction 90◦ counter-clockwise from the direction of motion. (Although
I haven’t proved it, this is true even if the test charge is moving in a diagonal direction.)

+ + +
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−
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+v⃗

F⃗

F⃗
F⃗

F⃗
v⃗

v⃗

v⃗

Figure 2.6. For each of the four directions of motion shown, the direction of the
force on the test charge is 90◦ counter-clockwise from the direction of motion.
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In this section I want to give you a mathematical formula that summarizes this in-
formation. To do so I must introduce a new abstract entity, the magnetic field. Like the
electric field, the magnetic field is a vector function—an infinite number of little arrows, one
at every point in space. The idea is to assume that the wire sets up a magnetic field in the
space around it, and that the test charge then responds only to the value of the magnetic
field at its own location. Using the idea of a magnetic field, we can avoid transforming
back and forth between reference frames every time we want to calculate a magnetic force.
The conventional symbol for the magnetic field vector is B⃗, probably because M already
stands for too many other things.

Which way should the magnetic field point in the example of figure 2.6? It would
be simple if the magnetic field always pointed in the direction of the force, but there’s
absolutely no way I can arrange that here, since the force could be in all sorts of different
directions depending on the direction the test charge is moving. At this point, therefore,
I will resort to mathematical trickery: I will define the magnetic field to point in the one
direction that has nothing to do with either the force or the velocity: perpendicular to
the page! Actually there are two such directions, up out of the page and down into the
page, and I could equally well choose either one. Following tradition, I will choose the field
to point down into the page in this case. What good does this definition do? I can now
summarize our knowledge of magnetic forces by saying that the magnetic force on a test
charge always points in a direction perpendicular to both its velocity and the magnetic
field. There are two such directions, and for a positive test charge you can find the correct
one using the right-hand rule: Place the field vector B⃗ and the velocity vector v⃗ tail-to-tail,
as in figure 2.7. With your right fist near the tails of the vectors, curl your fingers from the
v⃗ vector to the B⃗ vector, going around whichever way is shorter. Your thumb then points
in the direction of the force. Please stop now to try out the right-hand rule on the vectors
in figure 2.7. Then go back to figure 2.6, and check that, with B⃗ pointing down into the
page, the right-hand rule gives you the correct direction for the force in each case shown.

++

(a) (b)

B⃗
v⃗

v⃗ B⃗

Figure 2.7. To apply the right-hand rule, place the velocity vector and the magnetic
field vector tail-to-tail, as shown. Since this particle is positively charged, the magnetic
force on it points out of the page in (a) and into the page in (b).

I still haven’t given you a mathematical formula for the magnetic force on a particle.
So let me give it to you now, without further delay:

F⃗magnetic = qv⃗ × B⃗. (2.8)

Here q is the charge on the particle, v⃗ is its velocity vector, and B⃗ is the magnetic field
vector at its location. The symbol × denotes a cross product, similar to that used in
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defining angular momentum. The cross product of two vectors is another vector, whose
direction is given by the right-hand rule and whose magnitude is given by

|⃗a × b⃗| = |⃗a||⃗b| sin θ, (2.9)

where θ is the angle between the two vectors when they are placed tail to tail.

According to equation (2.8), the SI unit of magnetic field should be a newton per
coulomb per (meter per second). This unit is called the tesla, abbreviated T:

1 tesla ≡ 1
newton · second
coulomb · meter

. (2.10)

The field near a powerful laboratory magnet might have a strength of a few tesla. The
earth’s magnetic field has a strength of less than 10−4 tesla. To measure the strength of a
magnetic field you must measure the force on a test charge moving with a known velocity.

Equation (2.8) says that the magnetic force on a particle is stronger when it is moving
faster, or when it carries a greater charge, or when its velocity is more nearly perpendicular
to the direction of the magnetic field. The first two of these facts follow from the arguments
of Sections 2.1 and 2.2. The third fact is something I haven’t discussed so far, since it
involves thinking about what happens when the particle moves parallel to the direction of
the field, which would be down into the page in figure 2.6. If you’re good at visualizing
things in three dimensions, try to imagine what the electric field of the wire then looks
like in the test charge frame, and convince yourself that it’s plausible for there to be no
force in that case.

Exercise 2.6. Suppose that in some location there is a magnetic field that points
in the x direction. A particle moving initially in the y direction bends toward the
z direction. Does this particle have a positive or negative electric charge?

If both electric and magnetic fields are present at the location of a test charge in some
reference frame, then the total electromagnetic force on it is given by

F⃗ = q(E⃗ + v⃗ × B⃗). (2.11)

This equation is called the Lorentz force law. Its logical status is complex. On one hand,
it is the definition of both E⃗ and B⃗: To measure the electric and magnetic fields, you
must measure the forces on various test charges, at rest or moving with various velocities,
and see what values of E⃗ and B⃗ work in this equation. On the other hand, it is not at
all obvious a priori that it is possible to find values of E⃗ and B⃗ that work for all of the
infinitely many possible velocity vectors of the test charge. Thus the Lorentz force law
makes a powerful statement about nature: To determine the electromagnetic force on any
particle that passes through a point, no matter what its velocity, all you have to know are
six numbers, namely the three components of E⃗ and the three components of B⃗.



Lesson 3

Calculating the Magnetic Field

3.1 The Magnetic Field of a Wire

In this section I will turn the qualitative argument of Section 2.1 into a quantitative one,
and calculate the magnitude of the force exerted by a current-carrying wire on a moving
charge. This is equivalent to calculating the magnetic field produced by the wire. As usual,
I will derive the relevant formulas in a special, simple situation, then assert that the final
results are true more generally.

Consider again the situation shown in figures 2.1 and 2.2. The latter figure, showing
the situation in the reference frame of the test charge, is reproduced in figure 3.1. The
positive charges in the wire, each with charge q, are at rest in this frame, while the negative
charges, each with charge −q, are moving to the left with speed v. I have already argued
that the average distance between the negative charges in this frame is length-contracted
to

ℓ− = ℓ
√

1 − (v/c)2, (3.1)

where ℓ is the distance between them in the lab frame. Similarly, the distance between the
positive charges is un-length-contracted:

ℓ+ =
ℓ

√

1 − (v/c)2
. (3.2)

Both of these effects give the wire a net negative charge in the test charge frame, so that
it exerts an attractive force on the test charge.

+
−

+

v
+ + + + + + +

− − − − − − − − − − − −

test charge
(at rest)

ℓ+

ℓ−

R

Figure 3.1. A reproduction of figure 2.2, showing our model of a wire with a test
charge outside, as viewed from the test charge frame. The particles in the wire have
charges ±q, while the test charge has charge Q.

17
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The next step is to be precise about how strong this attractive force is. To do this we
must calculate the strength of the electric field at the location of the test charge. And to
do this, we must know exactly how much charge is on the wire. I haven’t told you how long
the wire is, and its total length turns out not to matter anyway, as does its total charge.
What matters is the charge per unit length, or the linear charge density, λ:

λ ≡ charge per unit length. (3.3)

The total value of the linear charge density is equal to the sum of the linear charge densities
of the postive and negative charges separately, taking signs into account. The linear charge
density of just the positive charges is

λ+ =
q

ℓ+
=

q
√

1 − (v/c)2

ℓ
, (3.4)

while the linear charge density of just the negative charges is

λ− =
−q

ℓ−
=

−q

ℓ
√

1 − (v/c)2
. (3.5)

The total linear charge density is therefore

λ = λ+ + λ− =
q

ℓ

(

√

1 − (v/c)2 − 1
√

1 − (v/c)2

)

. (3.6)

With a bit of algebra you can show that this expression reduces to

λ =
q

ℓ

−(v/c)2
√

1 − (v/c)2
. (3.7)

Notice that the net charge is negative, indicating that the electric field points toward the
wire.

I would now like to make two simplifications to equation (3.7). First, I’ll eliminate q
and ℓ in favor of I, the current flowing through the wire (as measured in the lab frame).
Using the definition of the current, you should be able to show that

I =
qv

ℓ
. (3.8)

Please stop now to derive this equation. Then combine it with equation (3.7), to show
that the charge density of the wire is

λ =
−Iv

c2
√

1 − (v/c)2
. (3.9)

Second, I’ll assume from here on that everything is moving slowly compared to the
speed of light: v ≪ c. Then the term (v/c)2 in the denominator can be neglected, and
we’re left with

λ =
−vI

c2
. (3.10)
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Although we’ve derived this formula for the special case where the velocity of the positive
charges in the wire is the same as the velocity of the test charge, it turns out to be true
much more generally: Just take I to represent the net current in the wire (no matter how
it arises—from motion of positive charges, or negative, or both, at any speed) and v to
represent the velocity of the test charge. If the current or the test charge is going to the
left, take I or v to be negative.

Exercise 3.1. Suppose that the current arises from a flow of positive charges to
the right, moving with speed u, where u ̸= v. Derive formula (3.10). Assume that
v ≪ c and u ≪ c, so that the velocity of the positive charges in the test charge
frame is simply u − v. (If you’ve studied relativistic velocity transformations, you
can derive equation (3.9) in general, for arbitrary values of u and v.)

Now that we know how much charge is on the wire in the test charge frame, the next
step is to calculate the electric field produced by this charge. You should already know
how to use Gauss’s law to calculate the electric field of a long line of charges that are at
rest. The same method and the same result will apply here, but we should be careful that
all the same assumptions are still valid.

So consider a Gaussian cylinder, of radius R and arbitrary length, centered on the wire
(see figure 3.2). To find the field using Gauss’s law we must first argue from symmetry that
E⃗ points directly toward the wire. This is not obvious here, since there is a fundamental
asymmetry in the motion of the charge distribution—the negative charges are moving to
the left. However, the electric field of each of these negative charges looks like figure 1.5
(but with the direction of the arrows reversed), and you can see there that this field is
symmetrical from front to back. When a bunch of fields like this are all lined up in a
row and added together, the horizontal components will cancel out due to this symmetry,
leaving only a radial component, pointing directly toward the wire.

Gaussian cylinderfield of a
negative charge

R

Figure 3.2. To find the electric field in the test charge frame, use a Gaussian cylinder.
The individual fields of the moving charges are symmetrical from front to back, so the
net field of the wire points directly away from it.
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Because the same symmetry arguments apply here, and because Gauss’s law is true for
moving charges as well as stationary ones, the relation between the linear charge density
and the electric field is exactly the same here as in electrostatics:

|E⃗(R)| =
1

2πϵ0

|λ|
R

. (3.11)

(This formula is exact in the limit where the wire is very long compared to R, and the
test charge is far from either end; otherwise it’s only approximate.) In our case the charge
density is given by equation (3.10), so the magnitude of the electric field is

|E⃗(R)| =
vI

2πϵ0c2R
. (3.12)

Since the wire is negatively charged, the field points toward it. To find the force on the
test charge Q, multiply the field by the charge:

|F⃗ | = Q|E⃗| =
QvI

2πϵ0c2R
. (3.13)

This is the force in the reference frame of the test charge. But if the speed of the test
charge is small compared to the speed of light, then the force is the same in both reference
frames, so this expression gives the force in the lab frame as well.

In the lab frame, however, there is no electric field (since the wire is electrically neutral),
so this force must be due to a magnetic field. In the previous lesson I defined the magnetic
field to point into the page in this case, so that the magnetic force on the test charge is
given by the general formula

F⃗magnetic = Qv⃗ × B⃗. (3.14)

Since v⃗ and B⃗ are perpendicular in our situation, the magnitude of the magnetic force
must equal simply Qv|B⃗|. Comparing this expression with equation (3.13), we find that
the magnitude of the magnetic field of the wire must be

|B⃗| =
I

2πϵ0c2R
. (3.15)

This is the final result of this section. The magnetic field strength of a long straight wire
falls off with distance in proportion to 1/R, as a result of the similar behavior of the
electric field of a line of charge (equation (3.11)). A sketch of the magnetic field of a wire
is shown in figure 3.3. To remember the direction of the field of a wire you can use another
right-hand rule: Point the thumb of your right hand along the direction of the current;
then your fingers curl around in the direction of the field.

What if a current-carrying wire is not “long” and “straight”? Then the wire still
produces a magnetic field, but the formula for the field is much more complicated. Quali-
tatively, it is always true that the field due to a small piece of the wire looks more or less
like figure 3.3, so it’s not hard in general to at least figure out the direction of the field of
a curved wire. Quantitative formulas for such fields tend to be quite complicated, though,
and are beyond the scope of these notes.
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×

Figure 3.3. A rough sketch of the magnetic field of a long straight wire, shown in
cross-section. The wire is in the middle of the figure, and the current is flowing away
from you, into the page. The strength of the field falls off as 1/R, while the direction
is given by the right-hand rule.

3.2 The Force Between Two Wires

We are now almost ready to perform a quantitative experimental test of all these theoretical
derivations. In particular, it would be nice to test the formula (3.15) for the magnetic field
of a current-carrying wire. To do so, we need a convenient means of measuring the strength
of a magnetic field. In principle, this could be done by sending a test charge through at
some known velocity, and measuring how much it bends. In practice, however, this method
is feasible only for microscopic test charges, such as electrons, and it is quite difficult to
measure the velocity of an electron directly (without using a magnetic field whose strength
is known). A better method is to introduce a second current-carrying wire, parallel to
the first. The field due to one wire then exerts a force on the other wire, which can be
measured with little difficulty.

We already have a formula for the magnetic field produced by one of the two wires in
such an experiment. Now we need a formula for the force exerted on the other wire by
this magnetic field. (A wire feels no force due to its own magnetic field.) So consider the
situation shown in figure 3.4. There is a magnetic field B⃗ pointing into the page, and the
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× × × × × ×

× × × × × ×

× × × × × ×

+
−

+
−

+
−

+
−

+
−

+
−

+
−

ℓ
v⃗
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Figure 3.4. A length of wire, with current flowing to the right, is immersed in a
magnetic field pointing into the page. The force on the wire points upward, according
to the right-hand rule.

wire carries a current I that flows toward the right. To be specific, I’m assuming that the
current is carried by positive charges q, traveling at speed v⃗ and separated by a distance ℓ.

The force on each of the positive charges in the wire points upward, and has magnitude

|F⃗q| = q|v⃗ × B⃗| = q|v⃗||B⃗|, (3.16)

where in the second equality I’m using the fact that v⃗ and B⃗ are perpendicular. The total
force on the wire depends on how many of these charges there are, or equivalently, on how
long the wire is. Let’s compute the force on a segment of the wire that has length L. Then
the number of moving charges in it equals L/ℓ, so the total force has magnitude

|F⃗total| =
q|v⃗||B⃗|L

ℓ
. (3.17)

Now the combination q|v⃗|/ℓ is equal to the current, just as in equation (3.8). I can therefore
rewrite this result as

|F⃗total| = IL|B⃗|. (3.18)

This equation is true for any straight segment of wire in a magnetic field where the current
is perpendicular to the field.

Question 3.2. Suppose that the wire were inclined at some other angle relative
to the direction of the magnetic field. What would the magnitude of the force be
in this case? In what direction would the force act?

Combining equations (3.15) and (3.18), you can now derive a formula for the magnitude
of the force between two parallel wires. If the wires both have length L, are separated by
a distance R, and carry currents I1 and I2, the magnetic force acting on each of them has
magnitude

|F⃗ | =
I1I2L

2πϵ0c2R
. (3.19)

Since the formula (3.15) is valid only at points close to the wire and far from either end,
equation (3.19) is subject to the restriction that the wires be very close together compared
to their lengths: R ≪ L. The direction of the force is determined by applying both right-
hand rules: To find the field of one wire, point your thumb in the direction of the current
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and look which way your fingers curl; then to find the force on the other wire, curl your
fingers from the direction of the current to the direction of the field, and look which way
your thumb points. You should find that parallel currents attract and anti-parallel currents
repel.

It is not hard to test equation (3.19) experimentally. One wire is normally held sta-
tionary, while the other is attached to a balance of some sort so the force on it can be
“weighed”. If you do the experiment carefully, you should find that the prediction is
precisely correct. Stop a moment and think about what this means. These last three
chapters have been a long sequence of logical steps leading from our earlier knowledge of
electrostatics to a prediction of the strength of the magnetic force between two wires. The
key ingredient throughout these chapters has been relativistic length contraction—one of
the most counter-intuitive ideas in all of physics. And yet here we see its prediction veri-
fied, quantitatively, in a phenomenon that is easy to produce using commonplace electrical
equipment.

Exercise 3.3. An experiment to measure the magnetic force between two wires
might use wires that are 26 cm long, separated by 1/2 cm, with 10 amperes flowing
through each. Calculate the magnitude of the magnetic force in newtons, and also
the mass, in grams, whose weight is equal to this force.

Although the magnetic force between two wires is usually fairly small, it’s a wonder
that we can measure it at all. It turns out that the electrons that flow through a wire
move very slowly, so the relativistic contraction in the distance between them must be
tiny indeed. How can such a tiny effect show up in such a simple measurement? The
compensating factor is the enormous number of electrons in the wire, together with the
intrinsic strength of the electrostatic force.

Exercise 3.4. Consider a length of copper wire one meter long and one millime-
ter in diameter. By looking up the necessary data, calculate the number of copper
atoms in the wire. (The density of copper is 9.0 g/cm3.) Suppose each atom con-
tributes one electron to the current flowing through the wire. How many coulombs
of charge do these electrons amount to? Is this a lot of charge? Suppose that the
magnitude of the current is 1 ampere. What is the average speed of the moving
electrons? By what fraction is the distance between them length-contracted?

3.3 A Historical Digression

Historically, magnetic forces between wires were discovered and measured long before any-
one even dreamed of length contraction. These measurements were made very shortly
after Oersted’s 1820 discovery that electric currents cause magnetic forces. Within a few
years, physicists such as Biot, Savart, and Ampere had formulated laws for calculating
the magnetic field around any arrangement of wires carrying steady currents. They did
not, of course, write equations like (3.15) and (3.19) in terms of the speed of light, since
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there was no obvious relation between light and magnetism. Even in modern notation,
equation (3.15), for instance, is normally written in the form

|B⃗| =
µ0I

2πR
, (3.20)

where µ0 is a constant, equal to 1/ϵ0c2. By measuring the strength of the force between
two wires, physicists effectively measured the value of µ0, treating it as an independent
fundamental constant of physics. (Alternatively, in some unit systems, µ0 or its equiv-
alent was taken as a defined quantity, leaving ϵ0 as the quantity to be measured in the
laboratory.)

In the decades following 1820, physicists (most notably Faraday) investigated the more
complex phenomena associated with time-dependent currents (such as the alternating,
back-and-forth current now used in household wires). They discovered that in these sit-
uations, the electric and magnetic fields are even more intimately linked to each other.
Eventually, around 1865, James Clerk Maxwell formulated a complete set of mathematical
equations that allowed one to calculate the electric and magnetic fields generated by any
distribution of charges and currents, undergoing any sort of motion. One of Maxwell’s
equations is none other than Gauss’s law; another says that the flux of the magnetic field
through any closed surface must equal zero. The remaining equations involve a concept
analogous to flux, called circulation, which expresses the rotational character of a field
like that shown in figure 3.3. Maxwell’s equations are treated in more detail in most
introductory physics texts.

One of the immediate consequences of Maxwell’s equations is that under some circum-
stances, a piece of the electric/magnetic field can essentially break free of the charge that
produced it and travel on its own, as a wave, to some distant place. Maxwell calculated
the speed at which these “electromagnetic waves” ought to travel, and found it to be, in
modern notation, 1/√ϵ0µ0. Noticing that this quantity was numerically close to 3 × 108

meters per second, he concluded that light itself is an electromagnetic wave. Here is a
quote from his 1865 paper:

By the electromagnetic experiments of MM. Weber and Kohlrausch,

v = 310 740 000 metres per second

is the number of electrostatic units in one electromagnetic unit of electricity [i.e.,
1/

√
ϵ0µ0], and this, according to our result, should be equal to the velocity of light

in air or vacuum.

The velocity of light in air, by M. Fizeau’s experiments, is

V = 314 858 000;

according to the more accurate experiments of M. Foucault,

V = 298 000 000.
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The velocity of light in the space surrounding the earth, deduced from the
coefficient of aberration and the received value of the radius of the earth’s orbit, is

V = 308 000 000.

Hence the velocity of light deduced from experiment agrees sufficiently well with
the value of v deduced from the only set of experiments we as yet possess. The value
of v was determined by measuring the electromotive force with which a condenser
of known capacity was charged, and then discharging the condenser through a
galvanometer, so as to measure the quantity of electricity in it in electromagnetic
measure. The only use of light in the experiment was to see the instruments. The
value of V found by M. Foucault was obtained by determining the angle through
which a revolving mirror turned, while the light reflected from it went and returned
along a measured course. No use whatever was made of electricity or magnetism.

The agreement of the results seems to show that light and magnetism are
affections of the same substance, and that light is an electromagnetic disturbance
propagated through the field according to electromagnetic laws.

Over the next 40 years, experiments continued to support Maxwell’s theory. But no
one fully understood it until Einstein, who noticed that although an electrical phenomenon
in one reference frame might appear to be a magnetic phenomenon in another frame, the
same physical phenomenon occurs in both frames. This observation led him to conjecture
that the laws of physics, even those of electromagnetism, might be the same in all inertial
reference frames, and this conjecture led him to his special theory of relativity in 1905.

3.4 The Forces on a Relativistic Charge

[This is an optional section for students who have studied relativistic dynamics. The goal
is to derive exact formulas for the electric and magnetic forces on a charged particle moving
at a speed comparable to the speed of light. For a fuller discussion see Purcell, Sections
5.8 and 5.9.]

Exercise 3.5. We already know how a nonrelativistic charged particle responds
to an electric field: its (Newtonian) momentum changes according to the equation

dp⃗

dt
= QE⃗, (3.21)

where Q is its charge and E⃗ is the field. How shall we generalize this equation to
the case where the charge is moving at relativistic speed? To answer this question,
consider a charge Q moving (initially) in the x direction with speed v. It then passes
through a region (such as that between a pair of capacitor plates) of length L0 in
which there is a constant electric field E⃗ pointing in the y direction (see figure 3.5).
The time that it spends in this region is t = L0/v. Analyze this situation in the



26 Lesson 3 Calculating the Magnetic Field

reference frame of the charged particle: find the field strength in this frame, and use
equation (3.21) (since the particle is now nonrelativistic) to compute the amount
∆y by which the particle has been deflected from its original trajectory by the time
it leaves the region. Argue in one sentence that this deflection must be the same
in both reference frames. Then working again in the lab frame, show that you will
obtain the proper deflection if you use equation (3.21), but with p⃗ replaced by the
relativistic momentum,

p⃗ =
mv⃗

√

1 − (v/c)2
(relativistic). (3.22)

L0

∆y

x

y

+Q

Figure 3.5. A charge Q moving at relativistic speed enters a region with a transverse
field, and is deflected (exercise 3.5). By calculating the deflection in the rest frame of
the charge, you can derive the correct equation of motion.

Exercise 3.6. Using a method similar to that of the previous exercise, you can
derive the correct equation of motion for a relativistic charge subject to a magnetic
force. Consider a positive test charge moving parallel to a current-carrying wire. As
in figure 2.1, assume for simplicity that the current is due to the motion of positive
charges in the wire, which have the same velocity as the test charge. Suppose that
a segment of the wire with length L0 is clearly marked for reference. Working in
the rest frame of the test charge, calculate the deflection of the test charge as it
passes this segment. Then show that, in order to obtain the same deflection in the
lab frame, one must use the equation of motion

dp⃗

dt
= Qv⃗ × B⃗, (3.23)

where p⃗ is the relativistic momentum and the |B⃗| is the same as in equation (3.15).

The rotating armatures of every generator and every motor in this age of
electricity are steadily proclaiming the truth of the relativity theory to all
who have ears to hear. —Leigh Page
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Radiation

So far these notes have treated phenomena associated with electric charges that are either
moving at constant velocity or flowing steadily through wires. The next level of complica-
tion involves sudden changes in the motion of charge. This is a very rich area for study,
which could lead us into alternating currents, time-dependent magnetic fields, and the
rest of Maxwell’s equations. In the interest of brevity, however, I will go straight to the
situation that I find most interesting of all: a point charge that undergoes a sudden change
in motion (acceleration), and the electric field produced by this accelerated charge.

4.1 The Field of an Accelerated Charge

Recall from Section 1.2 that when a point charge moves at constant velocity, its electric field
always points directly away from it, as shown in figure 1.5. (I’ll assume for convenience
that the point charge is positive.) In light of special relativity theory, this may seem
strange, since no information can travel faster than the speed of light. Why then does the
field at some faraway place point directly away from where the charge is now, rather than
from where it was some time ago? Does this imply that information about the motion of
the charge travels instantaneously throughout the whole universe? Well, not necessarily.
You see, the particle has been traveling at constant velocity, along a predictable course,
for some time. So if you’re at a faraway place, you could have arranged for the particle
to send you information about its position and velocity some time ago, so that when you
receive this information you can extrapolate its motion from the past into the present and
figure out where it must be by now.

Your scheme for predicting the position of the particle would be ruined, however, if the
particle undergoes some acceleration between when it sends you the information and the
present. You would think that the particle had continued to travel at constant velocity,
and the field at your location would point away from where the particle would be now if
it had done so, but in fact the particle is not there. For instance, suppose the particle is
initially traveling to the right at 1/4 the speed of light, then suddenly bounces off a wall
and recoils back to the left at the same speed (see figure 4.1). After one second, the news
of the bounce can’t have traveled farther than one light-second (300,000 km). If you’re
closer than one light-second to the location of the bounce then you’ve already received the
news, and the field at your location points away from where the particle is now. But if
you’re farther than one light-second from the location of the bounce then the news hasn’t

27
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A B C

D

E

Figure 4.1. A positively charged particle, initially traveling to the right at 1/4 the
speed of light, bounces off a wall at point B. The particle is now at point A, but if
there had been no bounce it would now be at C. The circle (actually a cross section of
a sphere) encloses the region of space where news of the bounce has already arrived;
inside this circle (as at D) the electric field points directly away from A. Outside the
circle (as at E) the news has not yet arrived, so the field points directly away from C.
As time passes the circle expands outward at the speed of light, and points A and C
move away from B at 1/4 the speed of light.

reached you yet, and the field at your location points away from where the particle would
be now if there had been no bounce.

In this section I will assume that some mechanism like this, or at least equivalent to this,
actually operates. We know from special relativity that no information can travel faster
than the speed of light. I’ll assume the best possible case: that the information travels at
precisely the speed of light, but no faster. This assumption, together with Gauss’s law, is
enough to determine the electric field everywhere around the accelerated charge, and that
is the goal of this section.

The complete map of the electric field of an accelerated charge turns out to be fairly
complicated. Rather than representing the field as a bunch of arrows (like the two shown
in figure 4.1), it is much more convenient to use a more abstract representation in terms of
field lines. Field lines are continuous lines through space that run parallel to the direction
of the electric field. A drawing of the field lines in a region therefore tells us immediately
the direction of the electric field, although determining its magnitude is not so easy. A
map of the field lines for the situation of figure 4.1 is shown in figure 4.2.

I have not drawn any field lines through the gray spherical shell in figure 4.2, since this
is the region that is just in the midst of receiving the news of the particle’s acceleration. To
determine the direction of the field here, imagine a curved Gaussian “pillbox”, indicated
by the dashed line in the figure, which straddles the gray shell. (This surface is meant to be
symmetrical about the line along which the particle is moving; viewed from along this line,
it would be circular.) The Gaussian surface encloses no electric charge, so Gauss’s law tells
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CA

Figure 4.2. A map of the electric field lines for the same situation as in figure 4.1.
The direction of the field within the gray spherical shell can be found be considering
the flux through the curved Gaussian “pillbox” indicated by the dashed line.

us that the total flux of E⃗ through it must be zero. Now consider the flux through various
parts of the surface. On the outside (right-hand) portion there is a positive flux, while on
the inside (left-hand) portion there is a negative flux. But these two contributions to the
flux do not cancel each other, since the field is significantly stronger on the outside than on
the inside. This is because the field on the outside is that of a point charge located at C,
while the field on the inside is that of a point charge located at A, and C is significantly
closer than A. The net flux through the inside and outside portions of the surface is
therefore positive. To cancel this positive flux, the remaining edges of the pillbox must
contribute a negative flux. Thus the electric field within the gray shell must have a nonzero
component along the shell, in toward the center of the Gaussian surface. I will refer to
this component as the transverse field, since it points transverse (i.e., perpendicular) to
the purely radial direction of the field on either side.

Exercise 4.1. Use a similar argument to determine the direction of the electric
field within the portion of the gray shell on the left side of figure 4.2.

To be more precise about the direction of the field within the gray shell, consider the
modified Gaussian surface shown in figure 4.3. Here I have shrunk the outer surface ef
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Figure 4.3. Another Gaussian surface applied to the same electric field as in fig-
ure 4.2. Since the flux along segment cd must be zero, the electric field within the
gray shell must be parallel to this segment.

until it subtends the same angle, as viewed from C, that the inner surface ab subtends as
viewed from A. Now the fluxes through ab and ef do indeed cancel. Segments bc and de
are chosen to be precisely parallel to the field lines in their locations, so there is no flux
through these portions of the surface. In order for the total flux to be zero, therefore, the
flux must be zero through segment cd as well. This implies that the electric field within the
gray shell must be parallel to cd. If you start at A and follow any field line outward, you
will turn a sharp corner at the gray shell’s inner edge, then make your way along the shell
and slowly outward, turning another sharp corner at the outer edge. (The thickness of the
gray shell is determined by the duration of the acceleration of the charge.) A complete
drawing of the field lines for this particular situation is shown in figure 4.4.

Exercise 4.2. Sketch the field lines for a point charge that undergoes each of the
following types of motion. (a) The charge moves to the right at 1/4 the speed of
light, then suddenly stops. (b) The charge is initially at rest, then suddenly begins
moving to the right at 1/4 the speed of light. (c) The charge is initially moving
to the right at 1/2 the speed of light, then suddenly slows down to 1/4 the speed
of light without changing direction. (d) The charge is bouncing back and forth,
at 1/4 the speed of light, between two walls. (e) The charge is initially moving
to the right at 1/4 the speed of light, then makes a sharp 90 degree turn without
changing speed.

The transverse portion of the electric field of an accelerated charge is also called the
radiation field, because as time passes it “radiates” outward in a sphere expanding at the
speed of light. If the acceleration of the charged particle is sufficiently great, the radiation
field can be quite strong, affecting faraway charges much more than the ordinary radial
field of a charge moving at constant velocity. The radiation field can also store a relatively
large amount of energy, which is carried away from the charge that created it. In the next
section I will justify these claims by deriving a formula for the strength of the radiation
field.
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Figure 4.4. A complete sketch of the electric field lines for the situation shown in the
preceding figures, including the transverse radiation field created by the acceleration
of the charge.

4.2 The Strength of the Radiation Field

To turn the qualitative ideas of the previous section into quantitative formulas, let us
consider a somewhat simpler situation, in which a positively charged particle, initially
moving to the right, suddenly stops and then remains at rest. Let v0 be the initial speed
of the particle, and let the deceleration begin at time t = 0 and end at time t = t0. I’ll
assume that the acceleration is constant during this time interval; the magnitude of the
acceleration is then

a = |⃗a| =
v0

t0
. (4.1)

I’ll also assume that v0 is much less than the speed of light, so that the relativistic com-
pression and stretching of the electric field discussed in Section 1.2 is negligible.

Figure 4.5 shows the situation at some time T , much later than t0. The “pulse” of
radiation is contained in a spherical shell of thickness ct0 and radius cT . Outside of this
shell, the electric field points away from where the particle would have been if it had kept
going; that point is a distance v0T to the right of its actual location. (The distance that
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θ
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Figure 4.5. Figure for determining the strength of the electric field within the pulse
of radiation. For clarity, only a single field line is shown here.

it traveled during the deceleration is negligible on this scale.) A single field line is shown
in the figure, coming out at an angle θ from the direction of the particle’s motion. There
is a sharp kink in this line where it passes through the shell, as discussed in the previous
section. We would like to know how strong the electric field is within the shell.

Gaussian
pillbox

E⃗

Er

Et

Figure 4.6. Close-up of the kink in the field in figure 4.5. The radial component Er
of the kinked field can be found by applying Gauss’s law to the pillbox shown.
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Let’s break the kinked field up into two components: a radial component Er that points
away from the location of the particle, and a transverse component Et that points in the
perpendicular direction (see figure 4.6). The ratio of these components is determined by
the direction of the kink; from figure 4.5 you can see that

Et

Er
=

v0T sin θ

ct0
=

aT sin θ

c
. (4.2)

We can find the radial component Er by applying Gauss’s law to a tiny pillbox that
straddles the inner surface of the shell (see figure 4.6). Let the sides of the pillbox be
infinitesimally short so that the flux through them is negligible. Then since the net flux
through the pillbox is zero, the radial component of E⃗ (that is, the component perpendic-
ular to the top and bottom of the pillbox) must be the same on each side of the shell’s
inner surface. But inside the sphere of radiation the electric field is given by Coulomb’s
law. Thus the radial component of the kinked field is

Er =
1

4πϵ0

q

R2
, (4.3)

where q is the charge of the particle. Combining equations (4.2) and (4.3) and using the
fact that R = cT , you should now be able to show that

Et =
qa sin θ

4πϵ0c2R
. (4.4)

Exercise 4.3. Although I’ve derived formula (4.4) for the special case where the
particle’s final velocity is zero, it is true much more generally. To convince yourself
of this, consider the case where the particle is initially at rest, then receives a sudden
kick to the right. Draw a picture analogous to figure 4.5, and follow the same
reasoning to arrive at equation (4.4). (Depending on your choice of coordinates,
you may find an additional minus sign.)

Equation (4.4) tells us all we need to know about the strength of the pulse of radiation.
First, note that the transverse field is proportional to 1/R, not 1/R2. This means that
as time goes on and R increases, the transverse field becomes much stronger than the
radial field; at very large distances the radial field can be completely neglected and the
field is purely transverse. Second, consider the dependence of Et on the angle θ: It is
weakest along the direction of motion (θ = 0 or 180◦) and strongest at right angles to
the motion (θ = 90◦). Looking back at figure 4.4, we see that the size of the kink in the
field is a qualitative indication of the field strength. Finally, notice that the strength of
the transverse field is proportional to a, the magnitude of the particle’s acceleration. The
greater the acceleration, the stronger the pulse of radiation.

This pulse of radiation carries energy. Recall from electrostatics that the energy per
unit volume stored in any electric field is proportional to the square of the field strength.
In our case, this implies

Energy per unit volume ∝ a2

R2
. (4.5)
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Since the volume of the spherical shell (the shell itself, not the region it encloses) is propor-
tional to R2, the total energy it contains does not change as time passes and R increases.
Thus when a charged particle accelerates, it loses energy to its surroundings, in an amount
proportional to the square of its acceleration. This process is the basic mechanism behind
all electromagnetic radiation: visible light and its invisible cousins, from radio waves to
gamma rays. Lesson 5 discusses a few applications of this all-important result.

4.3 The Larmor Formula

In this section I will derive a precise formula for the energy radiated by an accelerated
charged particle. You’ve already read the most important part of the derivation, which
ended with equation (4.4). The rest is mostly math.

The energy per unit volume stored in any electric field is

Energy per unit volume =
ϵ0
2
|E⃗|2. (4.6)

Once the pulse becomes large enough we can neglect the radial component of the field and
simply plug in Et for |E⃗|. The result is

Energy per unit volume =
q2a2 sin2 θ

32π2ϵ0c4R2
. (4.7)

Notice again that this formula is largest when θ = 90◦.

If we don’t care about the direction in which the energy goes, it is convenient to average
equation (4.7) over all directions. I’ll do this using a mathematical trick. Introduce a
coordinate system with the origin at the center of the sphere and the x axis along the
particle’s original direction of motion. Then for any point (x, y, z) on the spherical shell,
cos θ = x/R. Using angle brackets ⟨ ⟩ to denote an average over all points on the shell, I
claim that

⟨sin2 θ⟩ = ⟨1 − cos2 θ⟩ = 1 − ⟨x2⟩
R2

. (4.8)

Now since the origin is at the center of the sphere, you must certainly agree that the
average value of x2 is the same as the average value of y2 or z2:

⟨x2⟩ = ⟨y2⟩ = ⟨z2⟩. (4.9)

But this implies that

⟨x2⟩ =
1
3
⟨x2 + y2 + z2⟩ =

1
3
⟨R2⟩ =

R2

3
, (4.10)

since x2 + y2 + z2 = R2 and R is constant over the whole shell. Combining equations (4.8)
and (4.10) gives

⟨sin2 θ⟩ = 1 − R2

3R2
=

2
3
. (4.11)
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So the average energy per unit volume stored in the transverse electric field is

Average energy per unit volume =
q2a2

48π2ϵ0c4R2
. (4.12)

To obtain the total energy stored in the transverse electric field, we must multiply
equation (4.12) by the volume of the spherical shell. The surface area of the shell is 4πR2

and its thickness is ct0, so its volume is the product of these factors. Therefore the total
energy is

Total energy in electric field =
q2a2t0
12πϵ0c3

. (4.13)

Notice that the total energy is independent of R; that is, the shell carries away a fixed
amount of energy that is not diminished as it expands.

Now, in order to be completely precise, I have to cheat. So far I’ve discussed only
the electric field of the accelerated charge. But it turns out that there is also a magnetic
field, which carries away an equal amount of energy. Since I’ve omitted so many details
about magnetic fields from these notes, I have no way of justifying this claim. An error
of a factor of 2 would hardly matter for the applications we’ll be considering anyway, but
I think it’s better to go ahead and put it in for the record. Thus the total energy carried
away by the pulse of radiation is twice that of equation (4.13), or

Total energy in pulse =
q2a2t0
6πϵ0c3

. (4.14)

It is usually more convenient to divide both sides of this equation by t0, the duration
of the particle’s acceleration. The left-hand side then becomes the energy radiated by the
particle per unit time, or the power given off during the acceleration:

Power radiated =
q2a2

6πϵ0c3
. (4.15)

This result is called the Larmor formula, since it was first derived (using a more difficult
method) by J. J. Larmor in 1897. The derivation given here was first published by J. J.
Thomson (discoverer of the electron) in 1907. Although I have derived it for the special
case where the final velocity of the particle is zero, the Larmor formula is true for any sort
of accelerated motion provided that the speed of the particle is always much less than the
speed of light.



Lesson 5

Applications of Radiation

5.1 Electromagnetic Waves

In the previous lesson I argued that when a charged particle accelerates, part of its electric
field breaks free and travels away at the speed of light, forming a pulse of electromag-
netic radiation. Often, in practice, charged particles oscillate back and forth continuously,
sending off one pulse after another in a periodic pattern. An example of the electric field
around an oscillating charge is shown in figure 5.1.

A B

Figure 5.1. A map of the electric field lines around a positively charged particle
oscillating sinusoidally, up and down, between the two gray regions near the center.
Points A and B are one wavelength apart.

If you follow a straight line out from the charge at the center of figure 5.1, you will find
that the field oscillates back and forth in direction. The distance over which the direction
of the field repeats is called the wavelength. For instance, points A and B in the figure are
exactly one wavelength apart.

36
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If you sit at a fixed point and watch the electric field as it passes by, you will again
find that its direction oscillates. The time that it takes the pattern to repeat once is called
the period of the wave, and is equal to the time that the source charge takes to repeat
one cycle of its motion. The period is also equal to the time that the wave takes to travel
a distance of one wavelength. Since it moves at the speed of light, we can infer that the
wavelength and the period are related by

speed =
wavelength

period
or c =

λ

T
, (5.1)

where λ (“lambda”) is the standard symbol for wavelength, T is the standard symbol
for period, and c is the speed of light. The frequency of an oscillation or a wave is the
reciprocal of the period.

For reasons of tradition and convenience, electromagnetic waves of different wave-
lengths go by different names. Radio waves, with wavelengths of a meter or more, are
generated relatively easily by running charge up and down an antenna. Somewhat shorter
wavelengths are used for television and microwave communication. Infrared denotes wave-
lengths of a millimeter down to 700 nanometers; the random microscopic motions present
in all matter at room temperature cause the emission of infrared radiation with wave-
lengths in the range of about a hundredth of a millimeter. Hotter objects, such as the
sun, give off radiation in the visible spectrum, which covers the range 400–700 nanometers
over which the human eye is sensitive. The wavelength of visible light determines its color,
with red light having the longest wavelength and violet having the shortest (and the others
following the order of the rainbow). Still shorter wavelengths are referred to successively
as ultraviolet, x-rays, and gamma rays.

Exercise 5.1. Calculate the wavelength of the waves broadcast by an FM station
whose frequency is 90.9 megahertz. (One megahertz is 106 s−1.)

Question 5.2. Why is it most efficient for a radio transmission antenna to be
oriented vertically?

5.2 Why is the Sky Blue?

The sun gives off visible light of all colors, which bombards the earth’s atmosphere from
above. The atmosphere is relatively transparent to most of this light. But if the atmosphere
were completely transparent, the sky would appear black. Apparently, some of the light
from the sun is scattered, or deflected, by air molecules. When we look at the sky in a
direction away from the sun we see this scattered light, which is mostly blue (see figure 5.2).
Conversely, red light is transmitted more easily by the atmosphere, making the sun appear
red when it is near the horizon, since the light must pass through a great deal of air.

But why do air molecules scatter blue light more than red? Apparently, short wave-
lengths are scattered much more strongly than long wavelengths. We can understand this



38 Lesson 5 Applications of Radiation

‘‘I see
a red

sunset!”

‘‘I see
a blue
sky!”

red ligh
t

blue lig
ht

Figure 5.2. Air molecules scatter blue light more readily than red light, causing the
sky to appear blue and the sun (especially when it is near the horizon) to appear red.

phenomenon by imagining a simple model of the scattering process, and applying the re-
sult (4.5) from the previous chapter that the energy radiated by an accelerated charge is
proportional to the square of the acceleration.

Consider a single atom of nitrogen or oxygen in the atmosphere. For our purposes it
is best to think of the atom as a tiny point of positive charge (the nucleus), surrounded by
a larger cloud of smeared out negative charge (the electrons). The charges cancel, and the
atom is electrically neutral. Now suppose an electromagnetic wave comes by. The electric
field at the atom’s location first points up, then down, then up again, down again, and so
on. (For visible light, the wavelength is much larger than the size of an atom.) Although
the neutral atom feels no net force from this electric field, its constituents do feel forces,
so they are pulled slightly in opposite directions. They don’t go far, however, since they
pull back on each other. It is as if the electrons and the nucleus were attached together
by a stiff spring.

As the wave passes by, the nucleus oscillates slightly up and down at the same frequency
as the wave. We can describe its position as a function of time with a cosine function:

x(t) = x0 cos(ωt), (5.2)

where ω = 2πc/λ and λ is the wavelength. As long as the “spring” is very stiff, the
amplitude x0 will depend only on the strength of the electric field, not on the wavelength.

Since it is oscillating up and down, the nucleus itself gives off electromagnetic radiation,
with the same frequency and wavelength. According to equation (4.5), the energy radiated
is proportional to the square of the acceleration. The acceleration of the nucleus equals
the second derivative of its position:

a(t) =
d2x

dt2
= −x0ω

2 cos(ωt). (5.3)
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We can now determine how the amount of energy radiated depends on the wavelength:

Energy ∝ a2 ∝ ω4 ∝ 1
λ4

. (5.4)

This formula says that a short-wavelength wave causes the nucleus to radiate much more
energy than a long-wavelength wave. The same is true about the radiation given off by
the electrons, which are oscillating in the opposite direction at the same frequency.

This electromagnetic radiation given off by the atom carries away energy, and the
energy must come from somewhere. I think it should be plausible that the energy comes
from the incoming wave that made the atom oscillate in the first place. As this wave
continues on its way, some of its energy has been removed. I’d rather not go into the
precise mechanism behind this process at this stage; if you believe in energy conservation,
it has to happen somehow.

Thus we can conclude that when a light wave comes by, the atom removes some energy
from it, and re-radiates this energy as a wave of the same wavelength, moving out in all
directions. From equation (5.4) we see that this process is much more efficient for short
wavelengths (i.e., violet and blue light) than for long wavelengths. This is why the sky is
blue. Conversely, when a mixture of different colors of light passes through a lot of air,
much of the blue light will be removed, leaving mostly red behind. This is why sunsets are
red.

Question 5.3. Violet light has an even shorter wavelength than blue light. Why
do you think the sky appears blue rather than violet? (I can think of three reasons.)

5.3 The Rutherford Atom

Exercise 5.4. In the Rutherford model of the hydrogen atom (popular early in
this century), the electron orbits the proton in a circle of radius .53 Angstroms.
(a) Use Coulomb’s law and your knowledge of circular motion to find the speed
of the electron in its orbit (answer: somewhat less than 1% of the speed of light).
(b) Compute the kinetic energy of the electron in electron-Volts (answer: 13.6).
(c) Compute the power radiated by the electron in electron-Volts per second. (d) If
the electron loses energy continuously at this rate, how long does it take to lose
all its kinetic energy? (Answer: .05 nanoseconds.) What happens to it after that?
Comment on the plausibility of the Rutherford model.


