PhD Proposal

Measurement of the Polarized Valence Quark
Distribution Functions using Polarized
Proton and Deuteron Targets

Tamar Didberidze

Outline

- Motivation
- Physics
- Experimental Setup
- Prelim Results
- Conclusions

Motivation

- "The proton spin crisis"
- Semi-Inclusive Double Spin Asymmetry Measurement
- Extraction of (Δd/d) observable
- The perturbative Quantum Chromodynamics(pQCD) vs the hyperfine perturbed Constituent Quark Model(CQM)

Deep Inelastic Scattering vs Q²

Q² - Four Momentum Transferred Squared, d=(0.2GeV x fm)/Q

Valence Quark Region

Semi Inclusive Deep Inelastic Scattering(SIDIS) Diagram

Fragmentation function

$$\frac{d^3 \sigma_{1/2(3/2)}^h}{dx dQ^2 dz} \approx \Sigma_q e_q^2 q^{+(-)}(x, Q^2) D_q^h(z, Q^2)$$

Semi Inclusive Double Spin Asymmetry

$$A_1^h = \frac{\sigma_{1/2}^h - \sigma_{3/2}^h}{\sigma_{1/2}^h + \sigma_{3/2}^h}$$

$$A_{1,p}^{\pi^{+}\pm\pi^{-}} = \frac{4\Delta u_{v}(x) \pm \Delta d_{v}(x)}{4u_{v}(x) \pm d_{v}(x)} \qquad A_{1,2H}^{\pi^{+}\pm\pi^{-}} = \frac{\Delta u_{v}(x) + \Delta d_{v}(x)}{u_{v}(x) + d_{v}(x)}$$

Semi Inclusive deep inelastic scattering provides and opportunity to determine the struck quark flavor.

The CEBAF Large Acceptance Spectrometer at JLab

- Polarized electron beam
- Polarized targets
- Superconducting toroid magnet
- Drift chambers
- Cherenkov counter
- Electromagneticcalorimeter

Event Display

NH3 Target, inbending, 5.7 GeV beam energy

Target Materials

• Frozen ammonia: the polarized proton and neutron

- For background elimination: C12, liquid Helium and Nitrogen
- Polarized using the Dynamic Nuclear Polarization(DNP) Method
- ~96% and ~46% polarization for the proton and neutron

targets

Drift Chambers

- The trajectory of the charged particle and momentum
- Three regions
- ArCO₂ (90/10%) gas mixture
- The drift time and drift velocity

Cherenkov Detector

- The threshold detector
- Differentiate electrons from pions
- Gas C4F₁₀ (n=1.00153, high photon yield)
- Thresholds: 9 MeV for electrons and 2.5 GeV for pions

The CLAS TOF Scintillators

- 288 scintillators
- The time of flight for charged particle
- Coincidence for charged particles
- 120ps 250ps time resolution
- 30 cm to 450 cm long

The CLAS Calorimeter

- 8 electromagnetic calorimeter modules
- Measures the total energy deposited by the crossing particle
- Neutron detection, efficiency>50% for En>0.5GeV
- Electron detection above 0.5 GeV
- Photon detection above 0.2 GeV

Kinematics of the exclusive single pion electroproduction

- The virtual photon negative fourmomentum transferred squared
- Invariant mass of the photon-nucleon system
- The polar angle of the outgoing pion in CMF

$$\frac{d(W, Q^2)}{d(E_f, cos\theta_e)} = \frac{2M_p E_i E_f}{W}$$

• The azimuthal angle of the outgoing pion in CMF $\partial^5 \sigma$ 1

$$\frac{\partial^{5} \sigma}{\partial E_{f} \partial \Omega_{e} \partial \Omega_{\pi}^{*}} = \frac{1}{2\pi} \sum \frac{1}{L_{int} A_{cc} \epsilon_{CC} \Delta W \Delta Q^{2} \Delta \cos \theta_{\pi}^{*} \Delta \phi_{\pi}^{*}} \frac{d(W, Q^{2})}{d(E_{f}, \cos \theta_{e})}$$

• The scattered electron angle

Particle Identification Using Electromagnetic calorimeter

Cuts on the energy deposited in the electromagnetic calorimeter (ECtotal>0.2*p and ECinner>0.06*p)

Pion Removal From The Electron Sample Using Cherenkov Counter

The pion contamination in electron sample is ~ 9.6 %, and for NPHE>2.5 ~ 4.03 %

Data Comparison

 ${\varphi_{\pi}}^*$ vs Relative rate for fixed $\cos \theta_{pion}^{CM} = 0.5$ and W = 1.45G

K. Park. (The CLAS Collaboration). Phys. Rev., C77, 015208 (2008).

The Expected Precision of This Analysis

The ratio of polarized to unpolarized valence down quark distribution function vs Xbj

Future Plans

- Measure asymmetries using the knowledge of the probe and target's polarization state
- The double spin asymmetries
- About three data points will be extracted from this analysis