Drift Chambers: The Science behind the Art

- What are they? how do they work?
 - ionization of the gas by particles
 - "drifting" of the electrons
 - the "avalanche" at the wire
 - how tracking works
- frequently asked questions (your part!)

there are alternatives!

- Micro-pattern gas detectors
 - No wires to break, accurate patterns, fast ion clearing, anode at ground
 - Ideal for TPC's; not as uniform as wires
 - Less multiple scattering than Silicon
 - Multi-GEM's -> less ion feedback
 - more stable at same gain
 - shape of dielectric important
 - Micro-megas w/ resistive anodes
 - -> competitive with GEM's
 - Flexible readout schemes!

Monolithic pixel detectors

from Bellazini's talk

New Types of Silicon Trackers

so why drift chambers?

\$

 economical way to cover a large volume with tracking chambers

gas ionization by particles

"drifting" of the electrons

wire at positive voltage • electrons drift to the wire •strike a molecule every 2 µm •velocity $\sim 50 \, \mu \text{m/ns} \, (\text{max})$

the "avalanche"

the "avalanche" (cont.)

gain ~
$$2^{\text{ndbl}}$$

ndbl = $(r_{\text{crit}}-r_{\text{wire}})/\text{mfp}$
Ecrit = $k * V / r_{\text{crit}}$

gain $\sim 2^{k*V}$

rule of thumb: gain doubles every 75 or 100 Volts

"all-wire" drift chamber

wires in layers "brick-wall" fashion

how tracking works hit wires shown in yellow minimize rms between track and calculated distance

drift velocity calibration

June 9, 2008

What's a Drift Chamber?

Mac Mestayer

What's a Drift Chamber?

Mac Mestayer

Installing Pre-tensioning Wires

Pre-tensioning

- before we start stringing
- use springs on guard wires
- gradual release of tension

Operating successfully for ~10 years

. . . .

FAQ's (your turn!)

drift time calibration

efficiency vs. noise trade-off

magnetic field effects

Malter effect

fast gas

cathode emission

material choices: wires, endplates

quenching gas

reference books

HV plateau