Smearing of angular asymmetry of promt neutrons emitted by fission fragments created by linearly polarized photons Composition of depleted uranium (fraction by mass):

U-238 -- 99.8%

U-235 -- 0.2%

U-234 -- 0.001%

- Notation used:
- $\sigma(\gamma, F)$ is total photofission cross section;

 $\sigma(\gamma, xn)$ is photoneutron yield or production cross section;

 $\sigma(\gamma, 1nx)$ is the sum of cross sections that have a single in the final state $(1n + 1np + 1n\alpha + 1n + ...)$.

04/19/11

U-238

Fig. 1. Photofission cross section for U-238.

Fig. 2. Neutron photoproduction cross section for U-238.

U-235

Fig. 3. Photofission cross section for U-235.

Fig. 4. Neutron photoproduction cross section for U-235.

U-234

Fig. 5. Photofission cross section for U-234.

Fig. 6. Neutron photoproduction cross section for U-234.

Fig. 7. Bremsstrahlung spectrum with 25 MeV end-point.

Fig. 8. Polarization of photons VS photon energy.

Conclusions:

• Neutron yield from $\sigma(\gamma, xn)$ reaction is ~10 times higher than $\sigma(\gamma, F)$ reaction for all the components of DU;

• The neutrons from $\sigma(\gamma, xn)$ reaction do not carry the information on the pfoton polarization;

 Hence, our neutron angular asymmetry may not show visible asymmetry;

 Polarization degree changes in the whole range of photon energies which may lead to smearing the asymmetry;

 One of the possible ways to overcome the problem is to use fission chamber and trigger the DAQ system on the event of photofission.