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Abstract

By combining recent HERMES data on semi-inclusive DIS (SIDIS) π±-production

with the singlet fragmentation function Dπ+

Σ , which is well determined from e+e− data,

we are able to extract, for the first time, the flavoured fragmentation functions Dπ+

u , Dπ+

d

and Dπ+

s without making any assumptions about favoured and unfavoured transitions.

Whereas Dπ+

u and Dπ+

d are very well determined, the accuracy of Dπ+

s is limited by

the uncertainty in evolving Dπ+

Σ from the Z0 pole down to the SIDIS scale of a few

(GeV )2. We discuss how the precision on Dπ+

s could be improved. Knowledge of the

Dπ+

q=u,d,s will permit the extraction of the polarized parton densities from future polarized

SIDIS asymmetry measurements. We study the precision that can be expected in such

an extraction.

http://arXiv.org/abs/hep-ph/0108055v2


1 Introduction

Fully inclusive deep inelastic scattering (DIS) of the neutral type

l± + N → l± + X (1)

yields information only on the combination of parton densities q(x) + q̄(x), in the unpolarized

case, and on the combination of polarized parton densities ∆q(x) + ∆q̄(x) when longitudinally

polarized leptons interact with longitudinally polarized nucleons. It is crucially from reactions

with neutrinos and antineutrinos, in the unpolarized case, that a separate knowledge of the

parton q(x) and antiparton q̄(x) densities can be inferred. This avenue is, at present, not open

to the polarized case.

The main approach to a separate knowledge of the ∆q(x) and ∆q̄(x) thus rests upon the

growing activity in the field of polarized semi-inclusive deep-inelastic experiments of the type

−→
l
±

+
−→
N → l± + h + X (2)

where h is the detected hadron.

The cross sections (or spin asymmetries) for such reactions depend, in leading order QCD,

upon products of parton densities and fragmentation functions (FFs) Dh
q (z) for a parton q to

fragment into hadron h. (In NLO QCD these products become convolutions.)

It has been shown [1, 2] that if systematic errors can be well enough controlled so as to allow

a meaningful combination of data from different targets and hadrons of different charge, there

is sufficient information to extract information on both the polarized parton densities and the

fragmentation functions.

In the past this has not been possible and the strategy adopted in the analysis of the

experimental data [3–5] has been to assume a complete knowledge of the unpolarized densities

q(x), q̄(x) and of the fragmentation functions Dh
q (z), Dh

q̄ (z). With these, in [4] an auxiliary

function was constructed, the flavour (q = u, d, s, ū, d̄, s̄) purity P h
q/N (x, z) [6] for each hadron

h and for each target nucleon N . Given the purities, the polarized data can then, in principle,

be used to directly extract the polarized densities ∆q(x), ∆q̄(x).
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However, the situation has now changed because recently the HERMES group has for the

first time published unpolarized charge separated data for π± production on a proton target

[7]. The main aim of our paper is to demonstrate that this data, taken in conjunction with the

information on the flavour singlet combination Dπ+

Σ of FFs which can be fairly reliably obtained

from the data on e+e− → π±X at the Z0 peak, allows a first direct determination of the FFs

Dπ+

u , Dπ+

d and Dπ+

s . We note the caveat that the data in [7] covering 0.2 < z < 0.9 exhibit large

O(40%) isospin violations at large z ! 0.7. It is most unlikely that such a large breaking of

isospin invariance can be a genuine effect in the current fragmentation region of semi-inclusive

DIS (SIDIS), and it would seem unnatural to incorporate it into an FF formalism. A possible

explanation for the effect is given in [7]. Our analysis will therefore be relevant mainly for

intermediate 0.2 < z " 0.7.

It turns out that the least well determined FF is Dπ+

s , since it is most dependent on the

evolution downwards of Dπ+

Σ (z, Q2) all the way from Q2 ≈ m2
Z0 to Q2 ≈ few (GeV )2, and this

involves mixing with the gluon FF Dπ+

G (z, Q2). We try to assess the sort of accuracy required

in future e+e− measurements in order to achieve an accuracy of 20–30% on Dπ+

s (z).

In order to study the accuracy of the polarized parton densities obtained in the past via

the use of purity [4] we proceed as follows. Firstly, we use our FFs to calculate the central

value and errors of the integrated purity function
∫

dz P π+

q/p(x, z) and
∫

dz P π−

q/p(x, z) for a

proton target. Then, because at present the polarized SIDIS data does not exist separately for

π+ and π−, we take the central values of the published polarized parton densities of Leader,

Sidorov and Stamenov [8] obtained purely from DIS data, and using the central values of the

purity we generate fake ”data” on polarized SIDIS asymmetries ∆Aπ+

p and ∆Aπ−

p , and also on

the polarized DIS asymmetries. We then go through a similar procedure as adopted by the

HERMES group to obtain from this ”data” the polarized parton densities, with this difference,

that we allow for the uncertainty in the value of the purity function. In this way we obtain an

indication of the uncertainty in the polarized parton densities inherent in the purity approach.

In this paper we work to leading order (LO) in QCD as the purity concept only makes sense

in LO and because in LO we can deal with simple algebraic equations which are physically most
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transparent to interpret and have a well-defined error propagation. Of course, in the long run, a

more complete NLO analysis will be required. Standard experimental techniques [4] are based

on an ad hoc combination of LO (polarized) parton distributions with e.g. LUND-type Monte

Carlo fragmentation functions. Such an effective approach cannot be extended to NLO without

a highly non-trivial definition of the long- and short distance pieces in the MC environment

which is – to our knowledge – lacking at present. It will, therefore, be vital to bring the

measurements in touch with well-defined factorized1 QCD approaches [9] combining universal

parton distribution functions (PDFs) with universal FFs because, otherwise, the extracted

PDFs will not have any physical relevance. The most important experimental information

will be on scheme- and model-independent data for cross sections and not on the extracted

(unobservable) PDFs and FFs.

2 Extraction of Fragmentation Functions

2.1 Formalism

For a leading order treatment we follow the notation of [2] and remove some kinematical factors

by introducing for the DIS and SIDIS cross sections on a proton target:

σ̃DIS =
x(P + l)2

4πα2

(

2y2

1 + (1 − y)2

)

d2σDIS

dx dy
(3)

∆σ̃DIS =
x(P + l)2

4πα2

(

y

2 − y

) [

d2σDIS
++

dx dy
−

d2σDIS
+−

dx dy

]

(4)

σ̃h =
x(P + l)2

4πα2

(

2y2

1 + (1 − y)2

)

d3σh

dx dy dz
(5)

∆σ̃h =
x(P + l)2

4πα2

(

y

2 − y

) [

d3σh
++

dx dy dz
−

d3σh
+−

dx dy dz

]

(6)

Here, P µ and lµ are the nucleon and lepton four momenta, and σλν refers to a lepton of helicity

λ and a nucleon of helicity ν. The variables x, y, z are the usual DIS kinematic variables. Then
1The factorization of x− and z−dependence at LO is an artefact from the one particle phase space (delta-

function) of LO-SIDIS and is of no fundamental importance as opposed to the mass factorization of NLO cross

sections.
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one has the very simple LO results:

σ̃DIS(x, Q2) =
∑

q,q̄

e2
q qi(x, Q2) (7)

∆σ̃DIS(x, Q2) =
∑

q,q̄

e2
q ∆qi(x, Q2) (8)

∆σ̃h(x, z, Q2) =
∑

q,q̄

e2
q ∆qi(x, Q2) Dh

i (z, Q2) (9)

σ̃h(x, z, Q2) =
∑

q,q̄

e2
q qi(x, Q2) Dh

i (z, Q2), (10)

Note that the inclusion of a factor (1 + R)/(1 + γ2) in (10) (see e.g. Eq. (5) of [4]) is

not justified theoretically. The correct handling of the longitudinal cross-section is a more

complicated NLO effect in SIDIS (see Eqs. (56) - (60) of [2]). Here, as mentioned, we work to

LO only. Specializing now to π± production we introduce the measured observables2

Rπ±

p (x, z, Q2) ≡
σπ±

p

σDIS
p

(11)

=
σ̃π±

p

σ̃DIS
p

(12)

Using charge conjugation and isospin invariance we require only 3 independent FFs:

Dπ+

u (z, Q2), Dπ+

d (z, Q2), Dπ+

s (z, Q2) (13)

The remaining ones are then:

Dπ−

ū = Dπ−

d = Dπ+

d̄ = Dπ+

u (14)

Dπ−

d̄ = Dπ−

u = Dπ+

ū = Dπ+

d (15)

Dπ−

s̄ = Dπ−

s = Dπ+

s̄ = Dπ+

s (16)

Thus

Rπ+

p =
1

σ̃DIS
p

{

4

9

(

uDπ+

u + ūDπ+

ū

)

+
1

9

(

dDπ+

d + d̄Dπ+

d̄ + sDπ+

s + s̄Dπ+

s̄

)

}

=
1

9σ̃DIS
p

{

(4u + d̄)Dπ+

u + (4ū + d)Dπ+

d + (s + s̄) Dπ+

s

}

(17)

2 As we are considering positive and negative charges seperately we are not adopting the convention h± ≡

h+ + h− [10–12].
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Similarly

Rπ−

p =
1

9σ̃DIS
p

{

(4ū + d)Dπ+

u + (4u + d̄)Dπ+

d + (s + s̄) Dπ+

s

}

(18)

Assuming a good knowledge of the unpolarized parton densities we can immediately obtain

Dπ+

u − Dπ+

d =
9
(

Rπ+

p − Rπ−

p

)

σ̃DIS
p

4uV − dV
(19)

In order to obtain Dπ+

u + Dπ+

d and Dπ+

s we require one further piece of experimental in-

formation. We shall argue that it can be obtained from the data on e+e− → π±X at the Z0

peak.

2.2 Use of the e+e− data

For some time it was believed that the fragmentation functions obtained by Binnewies et al.

[10], from a detailed analysis of the e+e− data over a wide range of energies, were reasonably

well determined. However, recent analyses [11–13] have shown that equally good fits to e+e−

data can be achieved with FFs of a given flavour which differ widely from each other. The e+e−

data do not, therefore, constrain the FFs of a given flavour very well, and, in retrospect, this

is really not surprising.

However, by a piece of good fortune, the e+e− data at the Z0 peak directly measure a linear

combination of FFs which is very close to the SU(3)f flavour singlet combination, i.e. in

Dπ++π−

meas =
∑

q=u,d,s

(

Dπ++π−

q + Dπ++π−

q̄

)

ê2
q(s) (20)

the squared electroweak couplings ê2
q(s) from SU(2) × U(1) gauge symmetry (given e.g. in the

appendix of [11]) are flavour-independent to within ∼ 25 % at
√

s = MZ as opposed to a

relative factor of 4 for the electromagnetic couplings of up- and down-type quarks at lower cms

energies. The exact singlet below in (22) would correspond to a measurement at an e+e− cms

energy of
√

s = 78.4 GeV or
√

s = 113.1 GeV where it happens that ê2
u(s) = ê2

d(s) = ê2
s(s).

Accordingly (20) is approximately proportional to the singlet combination

Dπ+

Σ ≡
(

Dπ+

u + Dπ+

ū + Dπ+

d + Dπ+

d̄ + Dπ+

s + Dπ+

s̄

)

(21)

= 2
(

Dπ+

u + Dπ+

d + Dπ+

s

)

(22)
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Figure 1: The ratio of singlet fragmentation functions Dπ+

Σ found in [11] (K) and [12] (KKP),

at Q2 = 100 GeV2 (left) and at a typical SIDIS value Q2 = 2 GeV2 (right).

where we have used charge conjugation and eqs.(14) - (16) in the last step. Using isospin and

charge conjugation invariance Dπ±

u +Dπ±

ū = Dπ±

d +Dπ±

d̄
and approximating ê2

u(s)/ê
2
d(s)|s=M2

Z

=

ê2
u(s)/ê

2
s(s)|s=M2

Z

( 3/4 we can write the singlet combination

Dπ+

Σ =
4

7
D̃π++π−

meas −
1

7

(

Dπ+

s + Dπ+

s̄

)

(23)

where we have introduced a convenient change in normalization

D̃π++π−

meas = Dπ++π−

meas / ê2
d(s) (24)

The extreme limits 0 < (Dπ+

s + Dπ+

s̄ ) < (Dπ+

u + Dπ+

ū ) then correspond to

4

7
D̃π++π−

meas < Dπ+

Σ <
6

11
D̃π++π−

meas (25)

i.e. to only a ∼ 5% uncertainty for Dπ+

Σ .

Not surprisingly, therefore, the singlet FFs in the analyses [11–13] agree with each other to

better than 5% for 0.2 < z < 0.7 as seen in Fig. 1. We may thus take as a known quantity

Dπ+

Σ (z, Q2 = m2
Z0) and from Fig. 1 we observe a stable evolution down to Q2 = 100 GeV2.

But we require this quantity at a scale of a few (GeV)2 and it thus has to be evolved down

through a large range of Q2, and in this evolution mixes with the poorly known gluon FF Dπ+

G .

(Of course we cannot carry out the evolution of Dmeas itself since it is a combination of singlet

and non-singlet pieces and we do not know the values of these separately.) The FF analyses in
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[10–13] cover data down to
√

s ( 30 GeV and from Fig. 1 we judge this fixes a stable singlet FF

down to
√

s ( 10 GeV. Below, however, the evolution uncertainties set in and from the right

of Fig. 1 we quantify this uncertainty conservatively to be a ∼ 20 % effect uniformly in z. We

convinced ourselves this is indeed a typical order of magnitude by comparing the several sets of

LO and NLO FFs for π+ + π−, K+ + K−, h+ + h− in [10–13] and not only the two sets plotted

in Fig. 1. Clearly, a low scale measurement of the singlet FF or a resolution of the evolution

ambiguities through a determination of the gluon FF would be highly desirable information.

Subject therefore to possible errors due to the evolution, we have available the additional

experimental data that we require, and we then obtain:

Dπ+

u + Dπ+

d =
9
(

Rπ+

p + Rπ−

p

)

σ̃DIS
p − 2s Dπ+

Σ

4(u + ū − s) + d + d̄
(26)

and

Dπ+

s =
−18

(

Rπ+

p + Rπ+−
p

)

σ̃DIS
p + [4(u + ū) + d + d̄] Dπ

Σ

2 [4(u + ū − s) + d + d̄ ]
(27)

We note that the singlet FF plays no role in eq. (19) and that its weight increases in going from

(26), where it is multiplied by the suppressed strange PDF, to (27), where it is multiplied by

the unsuppressed u and d PDFs. Correspondingly, we must expect an increasing importance

of the propagation of the ∼ 20% error of Dπ+

Σ into these equations.

The LH sides of eqs. (19),(26) and (27) are functions of z and Q2, whereas the RH sides

are, in principle, functions of x, z and Q2. Only in the LO approximation does the variable

x become a passive variable [2] i.e. there is no dependence on it. Strictly one should test for

this lack of x-dependence, as a measure of the reliability of the LO treatment. However, in

this paper, in order to improve statistics, we shall take it for granted that the LO treatment is

adequate.

2.3 Combined analysis of HERMES and e+e− data

The formalism given in (14)-(16), (19), (22), (26) and (27) presupposes the availability of data

at fixed x and y. In fact the available HERMES data is integrated over the kinematic range [4]
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Q2 > 1 (GeV/c)2, W 2 > 10 GeV2, y < 0.85. Handling integrated data slightly complicates the

formalism since the y-dependent factors in the numerator and denominator of (11) no longer

cancel out to give the simpler result (12). We have done the analysis using the data integrated

over the kinematic range of the experiment and have checked that using the simpler formalism

with [4]

x =< x >= 0.082 (28)

Q2 =< Q2 >= 2.5 (GeV/c)2 (29)

W 2 =< W 2 >= 28.6 (GeV)2 (30)

makes no discernible difference to the results for the FFs.

The stability of our results for the central values of Dπ+

u , Dπ+

d is studied in Fig. 2. The

NLO determination of the singlet combination Dπ+

Σ due to Kretzer [11] was utilized. To test the

stability of our results we have used two different sets of unpolarized parton densities. We found

the effect of employing, respectively, the NLO MRST [14] or the NLO GRV [15] unpolarized

parton densities in eqs. (17), (18), (19), (26) and (27) leads to a negligible ∼ 5% effect. This is

because the unpolarized densities are very well constrained in the region of interest. We have

checked that use of the LO GRV densities also have almost no noticeable effect.

The FFs Dπ+

u and Dπ+

d are quite well constrained by the SIDIS data, but, as expected, Dπ+

s

is sensitive to the singlet combination of FFs determined from e+e− data. This can be clearly

seen in Fig. 2 where we compare the results for each Dπ+

q using NLO versions of Dπ+

Σ as obtained

by Kretzer [11] and Kniehl, Kramer and Pötter [12] from the e+e− data. As mentioned in the

Introduction, Dπ+

Σ is very well determined at the Z0 peak, but the mixing, under evolution,

with the gluon FF Dπ+

G induces an uncertainty of about 10 − 20% at Q2 = 2.5 (GeV/c)2. As

can be seen in Fig. 2, Dπ+

s may even turn unphysically negative at large z ! 0.7 where our

analysis is not supposed to be reliable, anyway, as mentioned in the Introduction. We note

Fig. 2 shows the typical effect expected from the uncertainty of Dπ+

Σ and that a similar picture

emerges if we switch Dπ+

Σ between the LO and NLO parametrizations of [11]: The stability of

Dπ+

u and Dπ+

d is remarkable. Dπ+

s , on the other hand, changes significantly. If a measurement

could fix Dπ+

Σ (Q2 ( 2.5 GeV2) to within ∼ 5% we would have a handle on Dπ+

s as well at the
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Figure 2: The valence-type (Dπ+

u ), sea-type (Dπ+

d ) and strange-type (Dπ+

s ) FF into charged

pions extracted under the assumption of isospin-invariance from HERMES SIDIS measurements

supplemented by the singlet FF of [11] (solid) and [12] (dashed), respectively. Details are given

in the text. Switching between the LO ↔ NLO parametrizations of [11, 12] leads to similar

variations in the FFs whereas the variation from employing different unpolarized PDFs is

negligible.

∼ 20 − 30% level.

In summary we see that Dπ+

u and Dπ+

d are remarkably well constrained by the SIDIS data.

Dπ+

s however, is undetermined within a factor of about 2. In Fig. 3 we show the final results

for our FFs and our estimate of their errors. These include Gaussian error propagation of the

experimental errors in [4] combined with a 20 % error of Dπ+

Σ (Q2 = 2.5 GeV2). The FFs can

be described analytically3 at 〈Q2〉 = 2.5GeV/c2 by

Dπ+

u = 0.689 z−1.039 (1 − z)1.241 (31)

3 Employing Dπ+

q = N zα (1 − z)βq ansätze with flavour independent N, α at
〈

Q2
〉

= 2.5GeV/c2 slightly

worsens the quality of the parametrization.
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Figure 3: The extracted fragmentation functions with errors which combine the experimen-

tal errors from [4] with a typical 20% uncertainty arising from the evolution of the singlet

fragmentation function.
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Figure 4: A comparison of the extracted FFs Dπ+

u , Dπ+

d (solid lines) at 〈Q2〉 = 2.5 GeV2 as in

Fig. 1 to the LO-parametrization in [11] (dashed) where (1− z)Dπ+

u (z) = Dπ+

d (z) at the input

Q2
0.

Dπ+

d = 0.217 z−1.805 (1 − z)2.037 (32)

Dπ+

s = 0.164 z−1.927 (1 − z)2.886 (33)

where Dπ+

s has to be taken with care as Fig. 3 shows that basically no value within 0 < Dπ+

s <

Dπ+

u can be excluded at present.

Finally, as a matter of interest, we compare in Fig. 4 the Dπ+

q=u,d,s obtained in this paper

with the LO Dπ+

q obtained by Kretzer [11] purely from an analysis of the e+e− data. In the

latter the flavour separation is not fixed by the data and is somewhat ad hoc and assumed

Dπ+

d = Dπ+

s and Dπ+

u > Dπ+

d by imposing (1 − z) Dπ+

u = Dπ+

d at the input scale. Surprisingly,

Kretzer’s Dπ+

q are not very different from the Dπ+

q obtained from our analysis of the SIDIS

data!
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3 Implications for the polarized parton densities

As mentioned in the Introduction, the absence of neutrino data for polarized DIS means that

the extraction of the individual ∆q(x) is impossible. Only the combination ∆q(x) + ∆q̄(x) can

be found and the flavour separation of these relies heavily on the evolution in Q2 and is thus

unreliable, given the small range of Q2 available in polarized DIS experiments. Thus polarized

SIDIS has a vital role to play in this matter.

At present, however, there are no published data for polarized π±-production, though there

does exist data for undifferentiated polarized h±- production, which have been used by the

HERMES group to extract information on the polarized parton densities via what is known as

the purity method.

We believe that in this approach the errors on the polarized parton densities are somewhat

underestimated and we shall use our FFs to study this question.

The flavour q purity function for protons[6] used by the HERMES group[4]4 is defined by

P h
q/p(x) =

e2
q q(x)

∫ 1

0.2 Dh
q (z) dz

∑

q′ e
2
q′ q

′(x)
∫ 1

0.2 Dh
q′(z) dz

(34)

where again, we utilize the MRST parton densities and take Q2 =< Q2 >.

Defining now the SIDIS spin asymmetry

< ∆Ah
p(x) >≡

∫ 1

0.2 dz ∆σ̃h
p (x, z)

∫ 1

0.2 dz σ̃h
p (x, z)

(35)

we have in LO,

< ∆Ah
p(x) >=

∑

q

P h
q/p(x)

(

∆q(x)

q(x)

)

. (36)

Similarly for the DIS spin asymmetry we can define

P DIS
q/p (x) =

e2
q q(x)

∑

q′ e
2
q′ q

′(x)
(37)

4Note that the graphs shown in the HERMES publications [16] and labelled “purity” are actually plots of

an “effective purity” incorporating various experimental cuts.
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and then, in LO, we have, with Q2 =< Q2 >:

∆σ̃DIS
p (x)

σ̃DIS
p (x)

=
∑

q

P DIS
q/p (x)

(

∆q(x)

q(x)

)

. (38)

Similar expressions for < ∆Ah
n(x) > and ∆σ̃DIS

n (x)/σ̃DIS
n (x) can be obtained in an obvious way.

At each value of x there are in principle 6 pieces of data (h = π± for p, h = π± for n, and

DIS for p, n), so that there is enough information to solve for the 6 quark polarized densities

∆q(x)/q(x), for q = u, ū, d, d̄, s, s̄. In the published analyses of the latter data [4] the HERMES

group has preferred to model the polarized sea with assumptions such as

∆ū

ū
=

∆d̄

d̄
=

∆s

s
=

∆s̄

s̄
≡

∆qs

qs
(39)

or

∆ū = ∆d̄ = ∆s = ∆s̄ ≡ ∆qs (40)

and then to obtain the 3 independent polarized densities by making a best fit to the 6 -pieces

of data at each x.

The problem with this approach is that the purity functions were constructed using LUND

model information on the FFs. We think [2] this is an un-reliable procedure since a combina-

tion of (polarized) PDFs and LUND-type of FFs is at present lacking a rigorous theoretical

framework as opposed to our combination of universal (polarized) PDFs with universal FFs in

line with the factorization theorems of QCD [17].

We argue that the above approach much underestimates the uncertainty on the polarized

parton densities. To illustrate this we construct purity functions and their errors for pion

production, using the fragmentation functions determined by us and the unpolarized MRST

parton densities. The formulae are exactly as in (34), (35) and (36) with h replaced by π+. We

show our calculated purities for protons with errors in Figs. 5, 6. The size of the errors are

as to be anticipated from the errors on the Dπ+

q=u,d,s in Fig. 3 and the definition of the purities

in Eq. (34). In the absence of separate π± SIDIS spin asymmetry data, we take the central

values of the polarized parton densities, as derived by Leader, Sidorov and Stamenov [8] from

purely DIS data and by feeding these ∆q into eqs. (36) and (38) and into the analogous one
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Figure 5: Purity functions P π+

q/p(x) extracted from HERMES data [7] with 20% uncertainty

from the evolution of the flavour-singlet Dπ
Σ.

for ∆Aπ−

p , in which we utilize the central values of the purity functions, we generate a set of

fake ”data” for ∆Aπ+

p , ∆Aπ−

p and ∆σ̃DIS
p /σ̃DIS

p .

Having now this set of fake “data” we forget where it came from and use it to solve for the

polarized parton densities, mimicking the approach used by the HERMES group. Thus we take

∆ū

ū
=

∆d̄

d̄
=

∆s̄

s̄
≡

∆qs

qs
(41)

and solve (38), (35) (for h = π+, π−) for ∆u/u, ∆d/d and ∆qs/qs. In this analysis we treat the

”data” as perfectly known, but include realistic errors on the purities, arising from the errors

on our FFs. In this way we illustrate the uncertainty on the polarized parton densities arising

solely from the uncertainties on the purity functions.

The results are shown in Fig. 7. It is seen that whereas ∆u/u is largely insensitive to the

uncertainty on the purity, both ∆d/d and ∆qs/qs inherit significant errors from this uncertainty.
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Figure 6: Purity functions P π−

q/p(x) extracted from HERMES data [7] with 20% uncertainty

from the evolution of the flavour-singlet Dπ
Σ.

Bearing in mind that the errors shown in Fig. 7 arise solely from the uncetainty on the

purities, one learns from this study that it is misleading to treat the purities as absolutely

known quantities. It would be far more meaningful to follow the strategy suggested in [2] and

use the SIDIS data to obtain both the FFs and the polarized parton densities. The purity is

an unnecessary element and in any case loses its usefulness in NLO.

4 Conclusions

We have shown that a judicious combination of the HERMES SIDIS data on π± production

and certain aspects of the data on e+e− → π±X allows the extraction, for the first time, of the

flavour separated fragmentation functions Dπ+

u , Dπ+

d and Dπ+

s .

The key element in this approach is the avoidance of any ad hoc model-dependent flavour
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Figure 7: Polarized parton densities extracted from the perfect ”data” as explained in the text.

The HERMES simplifying assumption ∆ū/ū = ∆d̄/d̄ = ∆s/s = ∆qs/qs has been used. The

uncertainties arise solely from the realistic experimental errors on our fragmentation functions.
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separation in the e+e− data, by noting that at the Z0 peak what is well determined is essentially

the light flavour singlet combination of fragmentation functions Dπ+

Σ = 2
(

Dπ+

u + Dπ+

d + Dπ+

s

)

,

which is almost identical in all analyses of the e+e− data. The negative aspect of this approach

is the need to evolve Dπ+

Σ down from the Z0 region to the SIDIS region of a few (GeV )2, which

involves mixing with the poorly known gluon fragmentation function.

In fact the HERMES data is extremely accurate, so that almost all the uncertainty in our

determination of Dπ+

u , Dπ+

d and Dπ+

s arises from the uncertainty in the evolution of Dπ+

Σ . As it

turns out, this has little effect on Dπ+

u and Dπ+

d , which are very well determined, but Dπ+

s has

relatively large errors.

We have also examined the question of the precision with which the polarized parton den-

sities could be extracted from future polarized SIDIS pion production data. Here we have

assumed perfect ’data’, then followed the HERMES purity method to obtain the polarized

parton densities, and thereby displayed the uncertainties generated solely by the errors on the

purity functions. The significance of this study is that in the earlier analyses [3, 4] the purity

functions are taken as almost perfectly known with essentially no errors. As expected we have

found that ∆d and ∆qs are significantly affected by the uncertainties in the purity functions.

This suggests that in the published polarized parton densities extracted from polarized SIDIS

h±-production data [3–5], the uncertainties given are missing an inherent error arising from the

fragmentation uncertainties as quantified in this paper.
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