
Chapter 5

Conclusion

A fission chamber was built using U-233 coating to measure the charge of the emitted
α-particles using the QADC. The triple GEM detector was build with a U-233 coating
installed on the detector cathode to become sensitive to thermal and fast neutron fission
reactions. The fission chamber performance was studied using the charge spectrum of the
emitted α-particles from U-233 coating whose interactions are the closest to the heavily
charged particles such as the fission fragments.

Increasing the size of the drift region increased the deposited charge in the drift. The
height of the drift region increased to become 1 cm which increased the number of free
electrons a 4.85 MeV α-particles to reach (2.02 ± 0.20) × 105 electron. Additionally,
it helped in measuring α-particles of different energies. However, the difference in the
deposited charge of the incident α-particles should be at least 27± 11 pC when the fission
chamber is operated at 2.87 kV and 3.57 kV for the GEM preamplifiers and the cathode
respectively.

GEANT4 simulations were performed to calculate the charge of each emitted particle
from U-233 coating in the drift region. In 90� Ar-gas and 10� /CO2 gas mixture, ion-
ization was main interaction in GEANT4 simulation that used in calculating the number
of primary and secondary electrons in drift region. The α-particles produced the largest
number of primary and secondary electrons compared to the other emitted particles in
the drift region, and the number of free electrons for an α-particle whose energy was 4.85
MeV reached (2.02± 0.20)× 105 electrons.

GEANT4 simulated the number of free electrons in the drift region for β and γ-
particles when the scattering process was included with the ionization. The number of
free electrons was 100 electrons for β-particles of energy of exceeded 100 keV as predicted
by GEANT4 and ESTAR software packages. In addition, each emitted photons from
U-233 coating liberated a single free electron since their energies are within the photo-
absorption limits. Therefore, the predicted contribution of β and γ-particles are negligible
for a 100 keV β-particles and all the photons that might liberate photo-electrons within
the same energy range. The prediction was dependent on the U-233 coating emission rate
which is considered very low compared to those particles rates any neutron flux.
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The measured charge spectrum by the QDC had two peaks, the first peak agreed
with the simulated deposited charge of 4.85 MeV α-particles. The Garfield and GEANT4
simulation for the deposited charge of the 4.85 MeV α-particles in the drift region agreed
with the first peak of a charge of 261±27 and a relative error of 9�. GEANT4 simulated
was 2.02× 105 free electrons liberated by ionization in the drift region, and then Garfield
predicted the multiplication of the triple GEM preamplifiers which was (8.81± 2.5)× 103

electrons at 2.87 kV and 3.57 kV for the GEM preamplifiers and the cathode respectively.
The charge of the second peak agreed with GEANT4 and Garfield simulation for

α-particles of energy of 6.40 MeV. The number of free electrons liberated by the 6.40
MeV was (2.50 ± 0.20) × 105 electrons which made the measured charge by the charge
collector reached 353±22 pC after electron multiplication. However, the U-233 α-particle
spectrum measured by an α-spectrometer had only one main at 4.85 MeV. Additionally,
the emission of 6.40 MeV is dependent on U-233 half-life that reaches 1.59× 105 years.

The rate of each peak in the charge spectrum dropped after closing the FR4 shutter.
The rate of the first peak reached to 0.32 Hz and the rate of the second peak reached 0.20
Hz. When the shutter is closed, both of them had a rate of 0.15 Hz confirmed that both
peaks represented the charge of α-particles. Nevertheless, the difference in second peak
rate was only 0.06 Hz, and the expected was to drop to half of the rate similar to the rate
of the first peak. Thus, the second peak rate was independent on the FR4 shutter, and
measured charge by the second peak was by the α-particles that were emitted with angle
of 7 degrees as shown in Figure 5.1. The emitted α-particles within this 7 degrees had
the longest track and deposited the highest charge in the drift region.
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Figure 5.1: The emitted α-particles that avoid the FR4 shutter.

The predicted average charge carried by the signal of the light and heavy fission
fragments after the GEM multiplication of (8.81±2.5)×103 electrons are 1.53×1012 and
7.13 × 1011 electrons respectively. Therefore, the detector is able to distinguish between
light and heavy fission fragments. Although the fission chamber distinguish the type of
the fission fragments, the gain of the fission chamber should be decreased to decrease the
number of free electrons lower than Raether limit (108 electrons)[59] which will decrease
the spark discharge probability in the fission chamber. Additionally, an advantage of a
lower gain is increase the energy limit of low ionizing particles (photons and electrons) to
contribute in the detector signal.
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Figure 5.2: Simulation of the Secodary Electrons of Heavy and Light of U-233 Fission
Fragments
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Appendix A

Solving Boltzmann Eqaution

A.1 Solving Boltzamn Equation for a Hole of Uni-

form Electric Field [56]

Asymptotic solution details for Boltzmann Equation A.1 for a hole has a uniform electric
field takes the form in Equation A.2.
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Using spherical coordinates, Equation A.3 as be written as in Equation A.6 which is
symmetric in φ direction.
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Assuming V (r�� θ) = Rk(r
�)Pk(µ) the solution of the zenith angle direction is the Legendre

polynomial, and can be written as shown in the Equation A.7.
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