Quark Spin in The Nucleon

Tamar Didberidze

Outline

 Motivation Physics Experimental Setup Preliminary Results Detector Work in LDS

Motivation

- "The proton spin crisis"
- Semi-Inclusive Double Spin Asymmetry Measurement
- Extraction of (Δd/d) observable
- The perturbative Quantum Chromodynamics(pQCD) vs
 the hyperfine perturbed
 Constituent Quark
 Model(CQM)

Quarks Inside the Nucleon

Valence Quark Region

Semi Inclusive Deep Inelastic Scattering(SIDIS) Diagram

Semi Inclusive Double Spin Asymmetry

$$A_1^h = \frac{\sigma_{1/2}^h - \sigma_{3/2}^h}{\sigma_{1/2}^h + \sigma_{3/2}^h}$$

$$A_{1,p}^{\pi^{+}\pm\pi^{-}} = \frac{4\Delta u_{v}(x) \pm \Delta d_{v}(x)}{4u_{v}(x) \pm d_{v}(x)} \quad A_{1,2H}^{\pi^{+}\pm\pi^{-}} = \frac{\Delta u_{v}(x) + \Delta d_{v}(x)}{u_{v}(x) + d_{v}(x)}$$

Semi Inclusive deep inelastic scattering provides and opportunity to determine the struck quark flavor.

The CEBAF Large Acceptance Spectrometer at JLab

- Polarized electron beam
- Polarized targets
- Superconducting toroid magnet
- Drift chambers
- Cherenkov counter
- Electromagnetic calorimeter

Event Display

NH3 Target, inbending, 5.7 GeV beam energy

Target Materials

- Frozen ammonia: the polarized proton and neutron
- For background elimination: C12, liquid Helium and Nitrogen
- Polarized using the Dynamic Nuclear Polarization(DNP) Method
- ~96% and ~46% polarization for the proton and neutron

Y. Prok, PhD Thesis, University of Virginia(2004)

Drift Chambers

- The trajectory of the charged particle and momentum
- Three regions
- ArCO₂ (90/10%) gas mixture
- The drift time and drift velocity

Cherenkov Detector

- The threshold detector
- Differentiate electrons from pions
- Gas C4F10 (n=1.00153, high photon yield)
- Thresholds: 9 MeV for electrons and 2.5 GeV for pions

The CLAS TOF Scintillators

- 288 scintillators
- The time of flight for charged particle
- Coincidence for charged particles
- 120ps 250ps time resolution

• 30 cm to 450 cm long

The CLAS Calorimeter

- 8 electromagnetic calorimeter modules
- Measures the total energy deposited by the crossing particle
- Neutron detection, efficiency>50% for En>0.5GeV
- Electron detection above 0.5 GeV

• Photon detection above 0.2 GeV

M. Amarian. et al., Nucl. Instr. And Meth. A460, 239(2001)

Kinematics of the exclusive single pion electroproduction

- The virtual photon negative fourmomentum transferred squared
- Invariant mass of the photon-nucleon system
- The polar angle of the outgoing pion in CMF
- The azimuthal angle of the outgoing pion in CMF
- The scattered electron angle

Particle Identification Using Electromagnetic calorimeter

Before EC Cuts

After EC Cuts

Cuts on the energy deposited in the electromagnetic calorimeter (ECtotal>0.2*p and ECinner>0.06*p)

Pion Removal From The Electron Sample Using Cherenkov Counter

The pion contamination in electron sample is \sim 9.6 %, and for NPHE>2.5 \sim 4.03 %

Data Comparison

K. Park. (The CLAS Collaboration). Phys. Rev., C77, 015208 (2008).

The Expected Precision of This Analysis

The ratio of polarized to unpolarized valence down quark distribution function vs Xbj

GEM Physics

M. Ziegler, Ph.D Thesis, Development of a Triple GEM Detector for the LHCb Experiment(2002)

Qweak GEM Detector

Drift Chamber Plateau Measurement

Rate=(DCSenseWire4 + FrontPMT + RF)/RF_Pulse

Drift Chamber(DC) Position Measurement

- DC sandwiched between PMTs
- DC Sense Voltage
 1450 Volts
- Trigger = 3 PMTs + RF

Rate=ADC Counts(FC>1000 && ADC>80)/ADC Counts(FC>1000)