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A1(x,Q2) for W below 2 GeV. At higher W , a smooth approah to the saling limit, established byearlier experiments, an be seen, but A1(x, Q2) is not stritly Q2�independent. We add signi�antlyto the world data set at high x, up to x = 0.6. Our data exeed the SU(6)-symmetri quark modelexpetation for both the proton and the deuteron while being onsistent with a negative d-quarkpolarization up to our highest x. This data set should improve next-to-leading order (NLO) pQCD�ts of the parton polarization distributions.PACS numbers: 13.60.Hb, 13.88.+e , 14.20.DhKeywords: Spin struture funtions, nuleon strutureThe spin struture of the nuleon has been investigatedin a series of muh-disussed polarized lepton satteringexperiments over the last 25 years [1, 2, 3, 4, 5, 6, 7, 8,9, 10, 11, 12, 13℄. These measurements, most of whihovered the deep inelasti sattering (DIS) region of large�nal-state invariant mass W and momentum transfer Q2,ompared the Q2-dependene of the polarized struturefuntion g1 with QCD expetations and shed new lighton the struture of the nuleon. Among the most surpris-ing results was the realization that only a small frationof the nuleon spin (20% � 30%) is arried by the quarkheliities, in disagreement with quark model expetationsof 60% � 75%. This redution is often attributed to thee�et of a negatively polarized quark sea at low momen-tum fration x, whih is typially not inluded in quarkmodels (see the paper by Isgur [14℄ for a detailed disus-sion).For a more omplete understanding of the quark stru-ture of the nuleon, it is advantageous to onentrate ona kinemati region where the sattering is most likely

to our from a valene quark in the nuleon arry-ing more than a fration x = 1/3 of the nuleon mo-mentum. In partiular, the virtual photon asymmetry,
A1(x) ≈ g1(x)/F1(x), (where F1 is the usual unpolarizedstruture funtion) an be (approximately) interpretedin terms of the polarization ∆u/u and ∆d/d of the va-lene u and d quarks in the proton in this kinematiregion, where the ontribution from sea quarks is min-imized. This asymmetry also has the advantage of show-ing smaller saling violations than the struture funtions
g1 and F1 individually [6, 8℄, making a omparison withvarious theoretial models and preditions more straight-forward.By measuring A1(x) at large x, one an test di�erentpreditions about the limit of A1(x) as x → 1. Non-relativisti Constituent Quark Models (CQM) based onSU(6) symmetry predit A1(x) = 5/9 for the proton,
A1(x) = 0 for the neutron and A1(x) = 1/3 for thedeuteron (modi�ed by a fator (1−1.5wD) for the D-stateprobability wD in the deuteron wave funtion). Quark



3models that inlude some mehanism of SU(6) symme-try breaking (e.g., one-gluon exhange hyper�ne intera-tion between quarks [14℄) predit that A1(x) → 1 for allthree targets as x tends to 1.This is beause target rem-nants with total spin 1 are suppressed relative to thosewith spin 0. The same limit for x → 1 is also preditedby pQCD [15℄, beause hadron heliity onservation sup-presses the ontribution from quarks anti�aligned withthe nuleon spin. In this ase, A1(x) would be preditedto be more positive at moderately large x < 1 beauseboth u and d quarks ontribute with positive polariza-tion [16℄. Finally, a reent paper [17℄ onneted the be-havior of A1(x) at large x with the dynamis of resonaneprodution via duality, leading to several preditions forthe approah to A1(x → 1) = 1 that depend on themehanism of SU(6) symmetry breaking.Clearly, measurements of the asymmetry A1 at moder-ate to high x ≥ 0.3 are an indispensable tool to improveour understanding of the valene struture of the nuleon.Although many data already exist on A1(x, Q2), most ofthe high-energy data have very limited statistis at large
x and therefore large unertainties; high-preision dataso far exist only for a 3He target [11℄ (whih an be usedto approximate A1 for a free neutron). Those data showfor the �rst time a positive asymmetry An

1 at large x, butagree better with preditions [14℄ that assume negative
d-quark polarization ∆d/d even at large x.In this paper, we report the �rst high-preision mea-surement of A1(x, Q2) for the proton and the deuteronat moderate to large x (x ≥ 0.15) over a range of mo-mentum transfers Q2 = 0.05...5.0 GeV2, overing boththe resonane and the deep inelasti region.The data desribed in this paper were olleted duringthe seond polarized target run (2000-2001) with CLASin Hall B of the Thomas Je�erson National Aelera-tor Faility (TJNAF � Je�erson Lab). Results from the�rst run with beam energies of 4.2 and 2.5 GeV were re-ently published [12, 13℄. The present data extend thekinemati overage signi�antly to both lower and highervalues of Q2 (overing nearly two orders of magnitude,instead of only one), and to higher values of W , overingmuh more of the DIS region (nearly doubling the rangein x). Longitudinally polarized eletrons of several beamenergies around 1.6 GeV and 5.7 GeV were sattered o�longitudinally polarized ammonia targets � 15NH3 and
15ND3 � and deteted in the CEBAF Large AeptaneSpetrometer (CLAS). A detailed desription of CLASmay be found in Ref. [18℄. The spetrometer is equippedwith a superonduting toroidal magnet and three drifthamber regions that over up to 80% of the azimuthalangles and reonstrut the momentum of harged par-tiles sattering within a polar angular range between8◦ and 142◦. (Due to obstrution by the polarized tar-get Helmholtz oils only sattering angles up to 50◦ wereaessible during our experiment.) We used both theinbending (for eletrons) and the outbending torus mag-

neti �eld orientations, to extend the overage in Q2.An array of sintillator ounters overs the above an-gular range and is used to determine the time of �ightfor harged partiles. A forward angle eletromagnetialorimeter 16 radiation lengths thik overs polar an-gles up to 45◦ and is used along with the drift hambersto separate pions from eletrons for this analysis. A gasCherenkov detetor overing the same angular range asthe alorimeter is used in onjuntion with the alorime-ter to reate a oinidene trigger, and to rejet pions.The target material was kept in a 1 K liquid Heliumbath and was polarized via Dynami Nulear Polariza-tion (DNP) [19℄. The target polarization was moni-tored online using a Nulear Magneti Resonane (NMR)system. The beam polarization was measured at reg-ular intervals with a Møller polarimeter. The produtof beam and target polarization (PbPt) was determinedfrom the well-known asymmetry for elasti (quasielas-ti) sattering from polarized protons (deuterons), mea-sured simultaneously with inelasti sattering. For the1.6 GeV data set, the average polarization produt was
PbPt = 0.54±0.005 (0.18±0.007) for the 15NH3 (15ND3)target. The orresponding value for the 5.7 GeV data setwas 0.51 ± 0.01 (0.19 ± 0.03).The data analysis proeeds along the following steps(see Ref. [13℄ for details). We �rst extrat the raw ountrate asymmetry Araw

|| = (N+ −N−)/(N+ + N−), wherethe eletron ount rates for anti-parallel (N+) and paral-lel (N−) eletron and target polarization are normalizedto the (live-time gated) beam harge for eah heliity.The bakground due to misidenti�ed pions and eletronsfrom deays into e+e− pairs has been subtrated fromthese rates. We divide the result by the produt of beamand target polarization PbPt and orret for the ontri-bution from non-hydrogen nulei in the target. For thispurpose, we use auxiliary measurements on 12C, 4He andpure 15N targets. We then ombine the asymmetries fordi�erent beam and target polarization diretions, therebyreduing any systemati errors from false asymmetries(no signi�ant di�erenes between the di�erent polariza-tion sets were found). Finally we apply radiative or-retions using the ode RCSLACPOL [6℄ whih followsthe presription by Kuhto and Shumeiko [20℄ for theinternal orretions and by Tsai [21℄ for the external or-retions. The (quasi-)elasti radiative tail ontribution tothe denominator of the asymmetry is treated as a furtherdilution fator fRC .The �nal result is the longitudinal (Born) asymme-try A|| = D(A1 + ηA2), where the depolarization fator
D = (1−E′ǫ/E)/(1+ ǫR), E (E′) is the beam (satteredeletron) energy, ǫ = (2EE′ − Q2/2)/(E2 + E′2 + Q2/2)is the virtual photon polarization, R

<
∼ 0.2 is the ra-tio of the longitudinal to the transverse photoabsorp-tion ross setion and η = (ǫ

√

Q2)/(E − E′ǫ). A2 isthe longitudinal-transverse interferene virtual photon
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1

(γ2 + 1)

(

A||

D
+ (γ − η)A2

) (1)with γ2 = Q2/ν2. The extration of this ratio is typi-ally less dependent on the unmeasured asymmetry, A2,than that of the asymmetry A1. Our parametrization in-ludes input from phenomenologial models AO [23℄ andMAID [24℄ as well as �ts to the polarized data from the�rst run with CLAS [12, 13℄ and to unpolarized struturefuntions measured in Je�erson Lab's Hall C [22℄. Moredetails of the parametrization and the data analysis anbe found in Ref. [13℄. Sine A1 and g1/F1 are indepen-dent of beam energy for given (x, Q2) values, we om-bine (after onsisteny heks) our results for eah bin in(x, Q2) for all beam energies and CLAS torus magneti�eld settings.To estimate systemati unertainties on our �nal re-sults, we vary all input parameters and models within
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Isgur [14℄ (grey band in �gures) is losest to the data.Of the di�erent mehanisms for SU(6) symmetry break-ing onsidered by Close and Melnithouk [17℄, the modelwith suppression of the symmetri quark wave funtion(dot-dashed urve in Figs. 3,4) deviates least from thedata. In general, our results are in better agreement withmodels (like the two mentioned above) in whih the ratioof down to up quarks, d/u, goes to zero and the polar-ization of down quarks, ∆d/d tends to stay negative forrather large values of x, in ontrast to the behavior ex-peted from hadron heliity onservation [15, 16℄. Thisis also in agreement with the �ndings by the experimenton 3He [11℄ in Je�erson Lab's Hall A.Within a naive quark�parton model (and ignoring anyontribution from strange quarks), we an estimate thequark polarizations ∆u/u and ∆d/d diretly from ourdata by ombining the results for g1 from the protonand the deuteron (inluding some nulear orretionsfor the deuteron D-state and Fermi motion) with our
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∆d

d
≈

8gd
1/(1 − 1.5wD) − 5gp

1

8F d
1 − 5F p

1

. (3)The result (Fig. 5) has relatively large statistial errorsfor ∆d/d, sine neither Ap
1 nor Ad

1 are very sensitive to
∆d/d. (We inluded data down to W = 1.77 GeV in ourestimate for the highest x points to redue those errorssomewhat; at these rather large values of Q2 > 3 GeV2we expet little deviation from the DIS limit in this Wrange). Our estimate is onsistent with the result fromthe 3He experiment [11℄, showing no indiation of a signhange to positive values up to x ≈ 0.6. At the sametime, our data for ∆u/u are the statistially most pre-ise available at this time, and show a onsistent trendtowards ∆u/u = 1 at our highest x points. While theabsolute values of ∆u/u and ∆d/d might be somewhatdi�erent from more sophistiated NLO DGLAP analy-ses (like the urves shown in Fig. 5), the error bars inFig. 5 give an indiation of the possible improvement inpreision when our data are inluded in suh �ts.In summary, we have measured the virtual photonasymmetry A1 and the related ratio g1/F1 of struturefuntions on the proton and the deuteron with unpree-dented preision, at high x and over a large kinematirange in x and Q2. Our data span the resonane region
W < 2 GeV and extend into the DIS region. They on-tribute to our knowledge of the valene quark strutureof the nuleon and its exited states, and an be used toimprove NLO �ts for the extration of polarized partondistribution funtions. Our data on�rm a lear inreasein the polarization of valene u quarks at high x as ex-peted by pQCD and various models of SU(6) symmetrybreaking; on the other hand, the polarization of the dquarks seems to remain negative up to the highest valuesof x aessible to our experiment. Future measurements,in partiular with the energy-upgraded Je�erson Lab a-elerator, will be able to extend these data with improvedpreision to higher values of x (exeeding x ≈ 0.8), allow-ing a de�nite test of various models of SU(6) symmetrybreaking. AknowledgmentsWe would like to aknowledge the outstanding e�ortsof the sta� of the Aelerator and the Physis Divisionsat Je�erson Lab that made this experiment possible.This work was supported in part by the Italian InstitutoNazionale di Fisia Nuleare, the Frenh Centre Nationalde la Reherhe Sienti�que, the Frenh Commissariatà l'Energie Atomique, the U.S. Department of Energyand National Siene Foundation, the Emmy Noether
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