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The MAXENT Paradigm

e  State of knowledge: probability density pP(X)
* Data: constraints jpr(X)Ci (x)=d
information content S p(x)]

o Quantification:

information distance S p,(x), p,(X)]

° MAXENT (constructive): minimize information content subject to the availabé data/constraints
S p()] + A [ dxp(X)C, (x) — min,,

. MAXENT (learning rule): minimize information distance subject to the availalle data/constraints

P (X), Po] + A [ dxp,()C (x) — min,,
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Motivation: Physics Laws as Rules of Inference

*  Why would universal physics laws exist? Who is enforog them?
The more universal a law is, the less likely iidsctually exist. The laws of thermodynamics
were once thought to have universal validity bubé&a out to express a little more than handling
one’s ignorance in a relatively honest way (Jays&s’Moreover, most fundamental aspects of
thermodynamics laws are insensitive to the pasrccihoice of the information distance!

. Mechanics

v Free particle (T.Toffoli’98)
v' Particle in a force field (*)

o Electrodynamics
v' Free field (*)
v Field with sources (*)

° Thermodynamics

v' Entropy (E.Jaynes’1957)

v Fisher information (Frieden, Plasti&offer'1999)

v' General criterion (Plastifd997, T.Yamano’2000)
o Quantum Mechanics

v" Non-relativistic (Frieden’89,?)

v Relativistic (?)

v" Quantum Field Theory (?)
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Problems with the Standard Characterizations

. Shannon-Jaynes entropy
v" Problems with continuous variables;
v In hindsight similar problems even with discreteiables;
v' The constraints are not likely to be in the forntrag average values;

° Shannon-Jaynes distance (Shore & Johnson):
v' Karbelkar'86 points out that there is a problenmhwite constraints as average values;
v' Uffink’95 takes issue with SJ’s additivity axiontis | believe is misguided (Caticha’06);
v' Thereal problemwith SJ’s derivation: SJ prove that the correctfaf the relevant
functional is

H[A(x), P = 9(FLA(), POD  FLa(x), p(x)] = [ cka(x) f (O'(( ))>

whereg(.) is a monotonic function. Then, however, they dedthandF equivalentand
require additivity for only, thus excluding the possibility thEtfactorizes andj(xy)=g(x)+g(y).
This ignored possibility is precisely the generahlig case!
®* Van’'s derivation:
v' Apparently the first to consider dependence alstherderivatives gb(x);
v Derives the functional as a linear combination ®t&8m and Fisher information term;
v' Deficient derivation — handles functionals as ifythieere functions.

New characterization from scratch is highly desirable!
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Inadmissible and Admissible Variations

P(X) = pu(X) = P(X)
[x [p(x)|<o

Variations of this kind shouldn’t be allowed
because they are physically insignificant. Yet
X they are included if we writ§] p] = § p(X)]

p(x) 1

() = p,(X) - py(¥)
X | (X)) &,
|diaio<x> <o,
X

Excluding the former and allowing the latter vadas is achieved by writing[ p] = § p(x), Op(X)]
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Axioms & Consequences

- Locality: S p = gl[ o (x, p.Cp))
« Expandability: Sp]= g('dxpf (X, p,Dp)) lim _,pf(x p,0p)=0
o Jx+y)=g(x)+9(y)

e Additivity (simple): S p,p,] =S p]+ I p,]

T g(xy) =g(x) +9(y)

_ p(x) | p(x) |
S p] —clln_[dxp(x){ml(x)} ex;{co(lilln mz(X)j ]

« Information “Distance” interpretation: M (X) = m,(x) = m(x)

qp m] ij dCldVW(C ,Cl, V)Cl|n'[dxp(x)|: pEX;i| eXF{C [D'ﬂ p( )) ]

m(x)
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Axiom (ii): Conditional probabilities

Jaxp(xy) = oy = y,) S - S+ [dyA(y)] dxp(x, y)
Sp]= g( [ dxdlyf (_rf])j Sp]= g( [ cxaypf (—r';)j
OS¢ (P _
0 —[pf(D)]+A(y)=0
5f(%).,./](y) -0 d)[p (m)]"‘ (y)
(X% ¥)y . P&Y) ¢, P(XY) _
F Y (Y 4 A(y) =0
F( :1& ig)Jr A(y)m(x.y) =0 mix,y)" mxy) m(xy)

P(X, y) =m(X, y)¢(y)

H@+d' (@ +AY@)=0 - @ (y) oY) (1)=3(y=¥o) - @ ()= 5(%(;;/0)

_ [ gy M6 Y)Y — ¥o) _ M(X, Yo)
= | dyp(x, y) =[d =
p(x|y) = [ dyp(x.y) =[ dy ) %)

V.1 Dimitrov, MaxEnt2007, Saratoga Springs, July 8-12 2007



Axiom (ii): Conditional probabilities 2

P

q(x) =In ()

S p] = g [ cepf (o, (00)?)

5] dxpf (q,(00)?) = [axdp| f + f,]+ 2] dxpf ,0q My =
= [ dxcplf + f, - 2m™*0 qmef ,00)| =[ dxdp[ f + f, - 20 Haf ,0q) — 2qf ,DInmg] =

J 2y _ ¢ | @) _
d)_[dxpf(q,(Dq))—f+q f,-2f, : +Ag + OInm(Iq | - 20q If

The term with Im can cause potential trouble with reproducing the
Kolmogorov’s rule unless either=const or elsef ,=0, which implies
c,=0
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General Consequences of Additivity

q(x)sln% S pl = g oot (0, (0)?)) 00%,%) =G0 +,00)  (00) =(0,6)° +(0,0,)°

a) g(x+y)=9(x)+9g(y) = g(x) =cx

[ abxdx, p,p, f(a + 0, (Cha)® + (0,6)%) =[ dxpy (0, (Tyc)? + [ A, p, F (0, (Oih)°)

f(p+0d,,2+2)=1(q,2)+ f(q.,2)= (0,2 =aq+ Sz

Sp] = cjdxp[aln—p +,B(Dln£)2}
m m

b) g(xy) =g(¥) +9(y) = g(x) =cInx
[ e pp, (0, + 0, (0,6)* + (0,6)%) =[ o py f (0, (Tu0h)” % [ e p, (0, (0)°)

f(q+0,,2+2)=1(q,2)* (q.2)= f(a,2) =expaq+ 52

S p] =clin J.dxp{(%j exp[B(0 In_r':])z]}
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Particular Parameter Choices

_ px) |~ p(x) )
S p,ml=cln J dxp(x){m} exr{c{m InmJ
j dxp(x)(m(X)J (Dln ol
M v-1
j dxp(x)( m(x)j

P(X)
m(x)

eC<<l: Jp.m=cl-v)SIp.m+ce

v y=1" S p.ml=cc jdxp(x)(D In j (Fisher distance)

v =0 ¢, =(v-1)?1: S p,m| -—In f dxp(x)( pEX;j (Renyi distance)

v c=b(-1) ¢, = a(-1)t Jp.m= aj dxp(x)In pi X) +bjdxp(x){DIn pixﬂ
v=1

(Van-type distance)
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Variational Equation

a9 =in 2 S pl = ol ot (0, (00)?))

2
f+f,-2f,A0-2(f,+ qflz)% - 4f ,,0qM0q Mg - 2f ,0Inmg = AC(X)

f=w-Df  f,=cf

f@O0)) =exd -Dar e ——— e ¢ e

2
U - 2C0[Aq +(1+ (v -1)q) (DCC:) +2¢,00q 00q Mg + Oln mDDq} f = AC(X)
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Van - Type Updating Rule

Van-type distance: Sp,p.]= ZJ dxwf{aln gz?)g + Zb{D In Zlg())} ] (p, (X) :tﬂf(x))

. : _ 2 4 2 i 2 _
Van-type updating rule: J, Idxél/ aln ’ +2b OlIn B +/1de C(x)|=0

—A¢1+[§+§In(ﬂj +M+/1C(X):|lﬂ:0
b b (u U

Non-linear Schrodinger equation of Bialynicki-Biautt Mycielski type.
If (X) is determined on an earlier stage of updating fagpniorx,(X) and constrain€,(x) then

2
%:c+cln£’uJ +A’u°+/10CO(x)
H Ho Ho

and any subsequent constraints are additive:

“Ap+ lzc ¥ cln[%j ¥ A;’O + 2,Cy(X) +/1C(x)]w -0
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Fisher Updating Rule

Fisher distance: I, P, =4 Xm//f(Awwz - Awwlj =4 dX%(%Nﬂz - Alﬂlj

Fisher updating rule: 9, D dxw(%A,u - Al/jj + AJd)qﬂZC(X):| =0

_Ap+ {A—;’ " AC(x)}w -0

Schrodinger equation where the “quantum potenaathe prior adds to the constraint.

If (X) is determined on an earlier stage of updating fagpniorx,(X) and constrain€,(x) then

Bu _ Dby + A,Co(X)
Ho

and any subseqguent constraints are additive:

Ay + [A’uo +ACo(X) + /‘C(X)}lﬂ =0

0
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Shannon-Jaynes Updating Rule

Shannon-Jaynes distance: Sp,p]= fdxpllnﬁ

2

Shannon-Jaynes updating rule: Jdexplnﬁ +/]fdxpC(x)} =0

p(x) = m(x)exd-1- AC(x)]

The usual exponential factor updating rule.

If (X) is determined on an earlier stage of updating fagpniorx,(X) and constrain€,(x) then

U= tyexp[-1-A,Cy(X)]

and any subseqguent constraints are additive:

P(x) = my(X)exp(2 = A,Cy (X) = AC(X)]
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Unigueness: Consistency with Probability Theory (i)

» Having a prior knowledge about the joint distribatof x andy in the formm(x,y)
includes knowing the conditional distribution>ofiveny:

mx,y) _mxy)
Jamxy) — m(y)

* If we now obtain some piece of information abgpetg.<C(y)>=d we could proceed
in two ways:
a) Start with the priom(y) and the data constraint and obtp{y);
b) Apply the learning rule to the joint distributioupdatingn(x,y) to p(x,y).
Consistency requires that the marginal of the wgmllatint distribution is the same

asp(y):

m(x|y) =

[ axp(x y)=p(y)
This is the same as requiring that the conditiaingtribution should remain unchanged:

p(x]y) =m(x]y) p(x,y) =m(x]y)p(y)
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Consistency upon updating: Example 1

Prior m(x,y)
Researchef Researches
m(y | x)m(x) m(x | y)m(y)
mM(y [ X) Pa(X) m(x|y) ps(Y)
W m(y) m(yrln>z)y|c)>B ) iy
AR R

Consistency upon updating requires that

P..(XY)=p,.(XY)
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Unigueness: Consistency with Probability Theory (ii

* A sufficient (but not necessary) condition is terong additivity” of S

S p(x, ), m(x V1= p(y) | m(y)] + [ dyp(y)S p(x] y), m(x| y)]

This is basically one of the Khinchin’s axioms disgnating Renyi'sy=1 against all
other values, thus singling out the Shannon-Jagtiistance.

* A sufficient (and probably necessary) conditiontfee above is that the updating amounts
to multiplying the prior by a function of the corant:

p(x,y) = m(x, y)F(AC(x,y))

This condition rules out the gradient-dependemhsefi.e. pins down the value gfto
zero), but does not restrict Renyw's
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Consistency upon updating: Example 1

Researchef

m(y | X)m(x)

MY [ X) Pa(X)

mM(X| y) Pa(X)
T m(y)

PA(X) Pg(Y)
M) oom(y)

Prior m(x,y)
Researche
m(x| y)m(y)
m(x|y) ps(Y)
v My 19Ps () 10
ResearcheC m(y)
Pc (X Y) i, y) 200 P ()

m(x)m(y)

Consistency upon updating requires that

Pag (% Y) = PealX, Y) = Pc(X,Y)
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Consistency upon updating: Example 1

Pas (X Y) = Pea(X, )

Pas (X, Y) = M(X, Y)F (A, T (X)) F (A:9(Y))

Pas (X, Y) = Pea(XY) <:> Pea (X y) =mM(X, Y)F (A59(Y))F (A, T (X))

Renyi with ¢,=0: f(q,2)

_ AC(x,y) AC(x,y) Jvl-l
4

p%,Y) = (X, y)[

Pag (% Y) = PealX: Y) = Pc(X,Y)

F(ALT(X)F(A:9(Y)) = F(A,T(X) + 4:09(Y))

This excludes allv£1 and leaves us with the Shannon-Jaynes distance!
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Consistency upon updating: Example 2

AN R w;, 0[0]]
<E>=WNTY f+w(N,=N) T D f | ——) P 2
i=1 i:Nl 1 2

Consistency upon updating requires that

P (X) =W p,(X) + W, p,(X)
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Intermediate Summary

The Shannon-Jaynes relative entropy is singledadtar, all, by
consistency requirements even when dependenceatetivatives
is allowed, as THE information distance measureetaised in a learning

rule:

[axp()In r';gg + [ axp()[A, + AC(x)] - min

Ay j dxp(x) =1 A: j dxp(X)C(x) =d

In practical applications, however, one rarely pasr knowledge in the
form of aprior distribution it is more likely to be in the form afata In
such cases the updating rule is useless but onstidlartilize the derived
unique information distance for identifyimgast-informative priors.
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L east-Informative Priors — Constructive Approach

- Identify a generic operation invoking “informatidwss”;

* Notice that the information loss should be (astdar small
information content) proportional to the informattioontent
unless negative information is tolerated;

» Look for the least-informative prior (under givdata constraints)

as the one least sensitive to the operation alddhwesensitivity
should be definedonsistently with the adopted information distance.

- The generic operation is coarse-graining:
1 , N X
P, () ==[dx p(x=x) f (%)
o o

- The information distance is the Shannon-Jaynes one:

Sp.p,]= _[dxpln p(x) ' -~ min (subject 6 dataconstrairg)
P,(X)

ag
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Coarse-Graining = Adding Noise

« Coarse-graining is equivalent to adding noisgi(x); X > y=x+Joz: p(X) - p(y,2)
- “Distance” between the original and the “noisy” pability distributions:
L 0e(¥:2), P, (¥, D] =9 pogm,(z)] + [ dzn, (29 po(¥12)., P, (1 2)]
0

p,(Y12) = p(x+/o2)
 For theShannon-Jaynes distance

:zzgjdx 1 [dzg(x)} +0(c*?)

(just another instance of De Bruijn identity)
Essentially the same result holds for general Reagi well as for symmetrized SJ distance or
the symmetric Bernardo-Rueda “intrinsic discrepancy

<> 1 [dp(x) T )
S22 = 5 oo B o)
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| east-Informative Priors: Constructive MAXENT

Least-informative prior:
The probability density least-sensitive to coarsmfgng subject to
all available data constraints:

| dxp(x)[Dp(X)} +A[ dxp(C(x) ~ min
P(x)

Putting herep(x) =¢?(X) and varyingie obtain theEuler-Lagrange equation

- 8909+ 5 COM0) =B - 2T [E-U (0l (0 =0

This is a Schrodinger equation; non-relativistica@um Mechanics appears to be basg¢d
on applying the constructive MAXENT to a systemhagiiven average kinetic energy,
l.e. temperature!
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L east-Informative Priors: Consistency Condition

Information h
P1 q “distance” P2

/ S(pil,LPZ) \

Prior
Data ﬂ MAXENT A Data q MAXENT B
Posterior L east-I nformative

Prior

The posterior is theclosestdistribution The LI prior is the one least sensitivdo

to the prior subject to the data constraints. coarse-graining subject to the data constraints.

“Closest” is with regard to the information “Least sensitive” is with regard to the

distance. information distance.
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L east-Informative Priors: Consistency Condition

Data q MAXENT B NoDataﬂ MAXENT B
~~—— J\/[
P1(X)

Data ﬂ MAXENT A

iyt

Consistency condition: P,(X)

R() =F(X)

Checks 0.k.? In some cases, maybe! In general — not!
MAXENT B with no data = uninformative prior=problem!
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Updating rule: Constructive rule:

m(x)

. 1 c:(x)ﬂ MAXENT B
C(x) ﬂ MAXENT A I
@ P(X)

p(x)
S [[dxp(dIn p)* + AfdxpC(x)| =0

5p[jdxpln£ +/1J.dxpC(x)} =0
m

p(X) =¢*(x)
p(x) = m(x) exl~ 1~ AC(x)] ~Ag(X) + AC()(x) =0
Based on Shannon-Jaynes relative Based on Fisher information for
entropy the “location” parameter as a measure

for sensitivity to coarse-graining
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» Axiomatic characterization of both constructive andlearning MAXENT is possible, based
on the notion of information distance;

* The usual requirements for smoothness, consisteneyth probability theory and additivity
narrow down the possible form of the information dstance to Renyi — type one with an
exponential Fisher-type modification factor;

* Additional requirement that different ways of feeding the same information into the method
produce the same results pins down the value of thieenyi’s parameter to 1 and excludes
the derivative terms singling out the Shannon-Jayredistance as the correct one;

» Since the information distance does not measure imfmation content, | propose to consider
the information content proportional to the sensitvity of the probability distribution to
coarse-graining. If this is accepted, a unique cotrsictive procedure for priors subject to
available information results, involving the minimization of Fisher information under constraints.

» The constructive procedure, if taken seriously, hatar reaching implications for the nature
of those physics laws which can be formulated as wational principle. They may turn out
to have very little to do with physicsper se.
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Thoughts

If we agree to use probability distributions (wduactions) to encode all knowledge we have abaytstem, there is no way of treating new information
in the form of a constraint in any exclusive wagice the PD gets updated all mean values it predietsreated on the same footing. Then, obtaingvg n
information basically means feeding in generallyoinsistent (with what the PD already predicts ffier particular observable) data. The behavior of the
MAXENT makes sense — the rule gives preferencedantbst up-to-date “data”. This would be an insurntable conceptual difficulty if we could
actually obtain information in the form of meanwed, which we can't.
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Fisher Distance Proper and Quantum Mechanics

QM connection: p() =¢() () =640  [da(a(x) =3 Y a(Max)=3x-x)

<y, |y, >:jd>ql/1(x)w2(x) =Y g9g® Distance based on Fisher metrics:
DZ (P, p) =42,(67 - 67)* =
_ dlnpolnp _ oY oy _ _ _ 0 A2 —
| -).[p] =|dx =4l dx———=4| dxg@ =40, =81-) 878°)=8@1-< >
Uentpl =[x =g ™ = 4 g g =4 0a =49 1-3.60°6%) =80 <41 1, >)

Minimizing the Fisher metrics distance = maximizihg QM overlap

[/ PG = dxp(x)[ p(x)} ~ explS™*(p.m)]

m(x)

QM inference based on Hilbert space metrics (same as Figtecs) is
equivalent to using MAXENT with=1/2 Renyi distance, and thus it is
guaranteed to eventually produce inconsistencies, i.e. paradoxes!
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Variation for General Functional Form

g0 =2 S pl = o[ dxet (a,(0™)

5[ dxpf (g,(00)*) = | x| f + T ]+2fdxpf Oq g

palg=0dp - dJDInp Oop—-opling - pUinm
5 dwpf (q,(00)2) = [dxdp|f + £, -2f,00Q0ING +Dinm) - 20 (f ,0q))

OO f,00) = f,Aq+(0q)* f,, + 2f ,,00 I00q (g

]t @00 =

=t +f,-2f,00-2(f, +of ,)PD _ 4t nqmOgmg - 2f,Oinm
= 1 289 PR KV q 229 qLiq L2-InmLliq

2
f+f -2f,Aq- 2(f,2 + qflz)% —4f,,0q00q g - 2f ,0Inm0g = AC(X)
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