

Vesslin I. Dimitrov on

Shannon-Jaynes Entropy and

 Fisher InformationJuly 13, 2007
(154)

ON SHANNON-JAYNES ENTROPY AND FISHER INFORMATION

Vesselin I. Dimitrov
Idaho Accelerator Center
Idaho State University, Pocatello, ID
dimivess@isu.edu

- State of knowledge: probability density

$$
p(\mathbf{x})
$$

- Data: constraints

$$
\int d x p(\mathbf{x}) C_{i}(x)=d_{i}
$$

- Quantification:

$$
S[p(\mathbf{x})]
$$

$$
S\left[p_{1}(\mathbf{x}), p_{2}(\mathbf{x})\right]
$$

- MAXENT (constructive): minimize information content subject to the available data/constraints

$$
S[p(\mathbf{x})]+\lambda_{i} \int d x p(\mathbf{x}) C_{i}(\mathbf{x}) \rightarrow \min _{p(\mathbf{x})}
$$

- MAXENT (learning rule): minimize information distance subject to the available data/constraints

$$
S\left[p_{1}(\mathbf{x}), p_{0}(\mathbf{x})\right]+\lambda_{i} \int d x p_{1}(\mathbf{x}) C_{i}(\mathbf{x}) \rightarrow \min _{p_{1}(\mathbf{x})}
$$

- Why would universal physics laws exist? Who is enforcing them?

The more universal a law is, the less likely it is to actually exist. The laws of thermodynamics were once thought to have universal validity but turned out to express a little more than handling one's ignorance in a relatively honest way (Jaynes'57). Moreover, most fundamental aspects of thermodynamics laws are insensitive to the particular choice of the information distance!

- Mechanics:
$\checkmark \quad$ Free particle (T.Toffoli'98)
\checkmark Particle in a force field (*)
- Electrodynamics:
\checkmark Free field $\left({ }^{*}\right)$
\checkmark Field with sources (${ }^{*}$)
- Thermodynamics:
\checkmark Entropy (E.Jaynes' 1957)
\checkmark Fisher information (Frieden, Plastino ${ }^{2}$, Soffer' 1999)
\checkmark General criterion (Plastino ${ }^{2}$ 1997, T.Yamano' 2000)
- Quantum Mechanics:
\checkmark Non-relativistic (Frieden'89,?)
\checkmark Relativistic (?)
\checkmark Quantum Field Theory (?)

Problems with the Standard Characterizations

- Shannon-Jaynes entropy:
\checkmark Problems with continuous variables;
\checkmark In hindsight similar problems even with discrete variables;
\checkmark The constraints are not likely to be in the form of true average values;
- Shannon-Jaynes distance (Shore \& Johnson):
\checkmark Karbelkar'86 points out that there is a problem with the constraints as average values;
\checkmark Uffink'95 takes issue with SJ's additivity axiom; this I believe is misguided (Caticha'06);
\checkmark The real problem with SJ's derivation: SJ prove that the correct form of the relevant functional is

$$
H[q(\mathbf{x}), p(\mathbf{x})]=g(F[q(\mathbf{x}), p(\mathbf{x})]) \quad F[q(\mathbf{x}), p(\mathbf{x})]=\int d x q(\mathbf{x}) f\left(\frac{q(\mathbf{x})}{p(\mathbf{x})}\right)
$$

where $g($.$) is a monotonic function. Then, however, they declare H$ and F equivalent and require additivity for F only, thus excluding the possibility that F factorizes and $g(x y)=g(x)+g(y)$. This ignored possibility is precisely the general Renyi case!

- Vàn's derivation:
\checkmark Apparently the first to consider dependence also on the derivatives of $p(\boldsymbol{x})$;
\checkmark Derives the functional as a linear combination of SJ term and Fisher information term;
\checkmark Deficient derivation - handles functionals as if they were functions.

> New characterization from scratch is highly desirable!

Inadmissible and Admissible Variations

$$
\begin{aligned}
& \delta p(x)=p_{1}(x)-p_{2}(x) \\
& \forall x|\delta p(x)|<\delta
\end{aligned}
$$

Variations of this kind shouldn't be allowed because they are physically insignificant. Yet they are included if we write $S[p]=S[p(x)]$

$$
\begin{gathered}
\delta p(x)=p_{1}(x)-p_{2}(x) \\
\forall x|\delta p(x)|<\delta_{1} \\
\left|\frac{d}{d x} \delta p(x)\right|<\delta_{2}
\end{gathered}
$$

Excluding the former and allowing the latter variations is achieved by writing $S[p]=S[p(x), \nabla p(x)]$

Axioms \& Consequences

- Locality:

$$
S[p]=g\left(\int d x f(x, p, \nabla p)\right)
$$

- Expandability:

$$
S[p]=g\left(\int d x p f(x, p, \nabla p)\right) \quad \lim _{p \rightarrow 0} p f(x, p, \nabla p)=0
$$

- Additivity (simple): $\quad S\left[p_{1} p_{2}\right]=S\left[p_{1}\right]+S\left[p_{2}\right]$

$$
\rightarrow g(x+y)=g(x)+g(y)
$$

Axiom (ii): Conditional probabilities

$$
\begin{array}{c|c}
\int d x p(x, y)=\delta\left(y-y_{0}\right) & S \rightarrow S+\int d y \lambda(y) \int d x p(x, y) \\
S[p]=g\left(\int d x d y f\left(\frac{p}{m}\right)\right) & S[p]=g\left(\int d x d y p f\left(\frac{p}{m}\right)\right) \\
\frac{\delta}{\delta p} f\left(\frac{p}{m}\right)+\lambda(y)=0 & \frac{\delta}{\delta p}\left[p f\left(\frac{p}{m}\right)\right]+\lambda(y)=0 \\
f^{\prime}\left(\frac{p(x, y)}{m(x, y)}\right)+\lambda(y) m(x, y)=0 & f\left(\frac{p(x, y)}{m(x, y)}\right)+\frac{p(x, y)}{m(x, y)} f^{\prime}\left(\frac{p(x, y)}{m(x, y)}\right)+\lambda(y)=0 \\
& p(x, y)=m(x, y) \phi(y)
\end{array}
$$

$$
\begin{gathered}
f(\phi)+\phi f^{\prime}(\phi)+\lambda(y(\phi))=0 \rightarrow \phi_{\lambda}^{*}(y) \quad \int d x m(x, y) \phi_{\lambda}^{*}(y) \stackrel{!}{=} \delta\left(y-y_{0}\right) \rightarrow \phi_{\lambda}^{*}(y)=\frac{\delta\left(y-y_{0}\right)}{m(y)} \\
p(x \mid y)=\int d y p(x, y)=\int d y \frac{m(x, y) \delta\left(y-y_{0}\right)}{m(y)}=\frac{m\left(x, y_{0}\right)}{m\left(y_{0}\right)}
\end{gathered}
$$

Axiom (ii): Conditional probabilities 2

$$
\begin{gathered}
q(x) \equiv \ln \frac{p(x)}{m(x)} \\
S[p]=g\left(\int d x p f\left(q,(\nabla q)^{2}\right)\right) \\
\delta \int d x p f\left(q,(\nabla q)^{2}\right)=\int d x \delta p\left[f+f_{, 1}\right]+2 \int d x p f_{, 2} \nabla q \cdot \nabla \delta q= \\
=\int d x \delta p\left[f+f_{, 1}-2 m^{-1} \nabla \cdot\left(m q f_{, 2} \nabla q\right)\right]=\int d x \delta p\left[f+f_{, 1}-2 \nabla \cdot\left(q f_{, 2} \nabla q\right)-2 q f_{, 2} \nabla \ln m \cdot \nabla q\right]= \\
\frac{\delta}{\delta \rho} \int d x p f\left(q,(\nabla q)^{2}\right)=f+q\left[f_{, 1}-2 f_{, 2}\left[\frac{(\nabla q)^{2}}{q}+\Delta q+\underline{\nabla \ln m \cdot \nabla q}\right]-2 \nabla q \cdot \nabla f_{, 2}\right]
\end{gathered}
$$

The term with $\ln m$ can cause potential trouble with reproducing the Kolmogorov's rule unless either $m=$ const or else $f_{, 2}=0$, which implies

$$
c_{0}=0
$$

General Consequences of Additivity

$$
q(x) \equiv \ln \frac{p(x)}{m(x)} \quad S[p]=g\left(\int \operatorname{dxpf}\left(q,(\nabla q)^{2}\right)\right) \quad q\left(x_{1}, x_{2}\right)=q_{1}\left(x_{1}\right)+q_{2}\left(x_{2}\right) \quad(\nabla q)^{2}=\left(\nabla_{1} q_{1}\right)^{2}+\left(\nabla_{2} q_{2}\right)^{2}
$$

a) $g(x+y)=g(x)+g(y) \Rightarrow g(x)=c x$

$$
\begin{aligned}
& \int d x_{1} d x_{2} p_{1} p_{2} f\left(q_{1}+q_{2},\left(\nabla_{1} q_{1}\right)^{2}+\left(\nabla_{1} q_{1}\right)^{2}\right)=\int d x_{1} p_{1} f\left(q_{1},\left(\nabla_{1} q_{1}\right)^{2}+\int d x_{2} p_{2} f\left(q_{2},\left(\nabla_{1} q_{1}\right)^{2}\right)\right. \\
& f\left(q_{1}+q_{2}, z_{1}+z_{2}\right)=f\left(q_{1}, z_{1}\right)+f\left(q_{2}, z_{2}\right) \Rightarrow f(q, z)=\alpha q+\beta_{z}
\end{aligned}
$$

$$
S[p]=c \int d x p\left[\alpha \ln \frac{p}{m}+\beta\left(\nabla \ln \frac{p}{m}\right)^{2}\right]
$$

b) $g(x y)=g(x)+g(y) \Rightarrow g(x)=c \ln x$

$$
\begin{aligned}
& \int d x_{1} d x_{2} p_{1} p_{2} f\left(q_{1}+q_{2},\left(\nabla_{1} q_{1}\right)^{2}+\left(\nabla_{1} q_{1}\right)^{2}\right)=\int d x_{1} p_{1} f\left(q_{1},\left(\nabla_{1} q_{1}\right)^{2} \times \int d x_{2} p_{2} f\left(q_{2},\left(\nabla_{1} q_{1}\right)^{2}\right)\right. \\
& f\left(q_{1}+q_{2}, z_{1}+z_{2}\right)=f\left(q_{1}, z_{1}\right) \times f\left(q_{2}, z_{2}\right) \Rightarrow f(q, z)=\exp (\alpha q+\beta z)
\end{aligned}
$$

$$
S[p]=c \ln \int d x p\left[\left(\frac{p}{m}\right)^{\alpha} \exp \left[\beta\left(\nabla \ln \frac{p}{m}\right)^{2}\right]\right]
$$

Particular Parameter Choices

$$
\begin{aligned}
& S[p, m]=c_{1} \ln \int d x p(x)\left[\frac{p(x)}{m(x)}\right]^{v-1} \exp \left[c_{0}\left(\nabla \ln \frac{p(x)}{m(x)}\right)^{2}\right] \\
& -c_{0} \ll 1: \quad S[p, m]=c_{1}(1-v) S_{R}[p, m]+c_{0} c_{1} \frac{\int d x p(x)\left(\frac{p(x)}{m(x)}\right)^{v-1}\left(\nabla \ln \frac{p(x)}{m(x)}\right)^{2}}{\int d x p(x)\left(\frac{p(x)}{m(x)}\right)^{v-1}} \\
& \checkmark v=1: \\
& S[p, m]=c_{1} c_{0} \int d x p(x)\left(\nabla \ln \frac{p(x)}{m(x)}\right)^{2} \quad \text { (Fisher distance) } \\
& \checkmark c_{0}=0 \quad c_{1}=(v-1)^{-1}: \quad S[p, m]=\frac{1}{v-1} \ln \int d x p(x)\left(\frac{p(x)}{m(x)}\right)^{v-1} \quad \text { (Renyi distance) } \\
& \checkmark \begin{array}{l}
c_{0}=b(v-1) \quad c_{1}=a(v-1)^{-1} \\
v=1
\end{array} \\
& S[p, m]=a \int d x p(x) \ln \frac{p(x)}{m(x)}+b \int d x p(x)\left[\nabla \ln \frac{p(x)}{m(x)}\right]^{2}
\end{aligned}
$$

Variational Equation

$$
q(x) \equiv \ln \frac{p(x)}{m(x)} \quad S[p]=g\left(\int d x p f\left(q,(\nabla q)^{2}\right)\right)
$$

$$
f+f_{, 1}-2 f_{, 2} \Delta q-2\left(f_{, 2}+q f_{, 12}\right) \frac{(\nabla q)^{2}}{q}-4 f_{, 22} \nabla q \cdot \nabla \nabla q \cdot \nabla q-2 f_{, 2} \nabla \ln m \cdot \nabla q=\lambda C(x)
$$

$$
\left.\begin{array}{rl}
f\left(q,(\nabla q)^{2}\right)=\exp \left[(v-1) q+c_{0}(\nabla q)^{2}\right] \longrightarrow \begin{array}{l}
f_{, 1}=(v-1) f
\end{array} f_{, 2}=c_{0} f \\
f_{, 12}=(v-1) c_{0} f & f_{, 22}=c_{0}^{2} f
\end{array}\right] \begin{aligned}
& v f-2 c_{0}\left[\Delta q+(1+(v-1) q) \frac{(\nabla q)^{2}}{q}+2 c_{0} \nabla q \cdot \nabla \nabla q \cdot \nabla q+\nabla \ln m \cdot \nabla q\right] f=\lambda C(x)
\end{aligned}
$$

Vàn - Type Updating Rule

Vàn-type distance: $\quad S\left[p_{1}, p_{2}\right]=2 \int d x \psi_{1}^{2}\left[a \ln \frac{\psi_{1}(x)}{\psi_{2}(x)}+2 b\left[\nabla \ln \frac{\psi_{1}(x)}{\psi_{2}(x)}\right]^{2}\right] \quad\left(p_{i}(x)=\psi_{i}^{2}(x)\right)$
Vàn-type updating rule: $\quad \delta_{\psi}\left[\int d x \psi^{2}\left[a \ln \frac{\psi}{\mu}+2 b\left[\nabla \ln \frac{\psi}{\mu}\right]^{2}\right]+\lambda \int d x \psi^{2} C(x)\right]=0$

$$
-\Delta \psi+\left[\frac{a}{b}+\frac{a}{b} \ln \left(\frac{\psi}{\mu}\right)^{2}+\frac{\Delta \mu}{\mu}+\lambda C(x)\right] \psi=0
$$

Non-linear Schrodinger equation of Bialynicki-Birula - Mycielski type.
If $\mu(x)$ is determined on an earlier stage of updating from a prior $\mu_{0}(x)$ and constraint $C_{0}(x)$ then

$$
\frac{\Delta \mu}{\mu}=c+c \ln \left(\frac{\mu}{\mu_{0}}\right)^{2}+\frac{\Delta \mu_{0}}{\mu_{0}}+\lambda_{0} C_{0}(x)
$$

and any subsequent constraints are additive:

$$
-\Delta \psi+\left[2 c+c \ln \left(\frac{\psi}{\mu_{0}}\right)^{2}+\frac{\Delta \mu_{0}}{\mu_{0}}+\lambda_{0} C_{0}(x)+\lambda C(x)\right] \psi=0
$$

Fisher Updating Rule

Fisher distance: $\quad I\left[p_{1}, p_{2}\right]=4 \int d x \psi_{1}^{2}\left(\frac{\Delta \psi_{2}}{\psi_{2}}-\frac{\Delta \psi_{1}}{\psi_{1}}\right)=4 \int d x \psi_{1}\left(\frac{\psi_{1}}{\psi_{2}} \Delta \psi_{2}-\Delta \psi_{1}\right)$

Fisher updating rule: $\quad \delta_{\psi}\left[\int d x \psi\left(\frac{\psi}{\mu} \Delta \mu-\Delta \psi\right)+\lambda \int d x \psi^{2} C(x)\right]=0$

$$
-\Delta \psi+\left[\frac{\Delta \mu}{\mu}+\lambda C(x)\right] \psi=0
$$

Schrodinger equation where the "quantum potential" of the prior adds to the constraint.
If $\mu(x)$ is determined on an earlier stage of updating from a prior $\mu_{0}(x)$ and constraint $C_{0}(x)$ then

$$
\frac{\Delta \mu}{\mu}=\frac{\Delta \mu_{0}}{\mu_{0}}+\lambda_{0} C_{0}(x)
$$

and any subsequent constraints are additive:

$$
-\Delta \psi+\left[\frac{\Delta \mu_{0}}{\mu_{0}}+\lambda_{0} C_{0}(x)+\lambda C(x)\right] \psi=0
$$

Shannon-Jaynes distance:

$$
S\left[p_{1}, p_{2}\right]=\int d x p_{1} \ln \frac{p_{1}}{p_{2}}
$$

Shannon-Jaynes updating rule: $\quad \delta_{p}\left[\int d x p \ln \frac{p}{m}+\lambda \int d x p C(x)\right]=0$

$$
p(x)=m(x) \exp [-1-\lambda C(x)]
$$

The usual exponential factor updating rule.
If $\mu(x)$ is determined on an earlier stage of updating from a prior $\mu_{0}(x)$ and constraint $C_{0}(x)$ then

$$
\mu=\mu_{0} \exp \left[-1-\lambda_{0} C_{0}(x)\right]
$$

and any subsequent constraints are additive:

$$
p(x)=m_{0}(x) \exp \left[2-\lambda_{0} C_{0}(x)-\lambda C(x)\right]
$$

- Having a prior knowledge about the joint distribution of x and y in the form $m(x, y)$ includes knowing the conditional distribution of x given y :

$$
m(x \mid y)=\frac{m(x, y)}{\int \operatorname{dxm}(x, y)}=\frac{m(x, y)}{m(y)}
$$

- If we now obtain some piece of information about y e.g. $\langle C(y)\rangle=d$ we could proceed in two ways:
a) Start with the prior $m(y)$ and the data constraint and obtain $p(y)$;
b) Apply the learning rule to the joint distribution, updating $m(x, y)$ to $p(x, y)$.

Consistency requires that the marginal of the updated joint distribution is the same as $p(y)$:

$$
\int d x p(x, y) \stackrel{!}{=} p(y)
$$

This is the same as requiring that the conditional distribution should remain unchanged:

$$
p(x \mid y)=m(x \mid y) \quad p(x, y)=m(x \mid y) p(y)
$$

Consistency upon updating: Example 1

Consistency upon updating requires that

$$
p_{A B}(x, y)=p_{B A}(x, y)
$$

Uniqueness: Consistency with Probability Theory (ii)

- A sufficient (but not necessary) condition is the "strong additivity" of S :

$$
S[p(x, y), m(x, y)] \stackrel{!}{=} S[p(y) \mid m(y)]+\int d y p(y) S[p(x \mid y), m(x \mid y)]
$$

This is basically one of the Khinchin's axioms discriminating Renyi's $v=1$ against all other values, thus singling out the Shannon-Jaynes distance.

- A sufficient (and probably necessary) condition for the above is that the updating amounts to multiplying the prior by a function of the constraint:

$$
p(x, y)=m(x, y) F(\lambda C(x, y))
$$

This condition rules out the gradient-dependent terms (i.e. pins down the value of c_{0} to zero), but does not restrict Renyi's v,

Consistency upon updating: Example 1

Consistency upon updating requires that

$$
p_{A B}(x, y)=p_{B A}(x, y)=p_{C}(x, y)
$$

Consistency upon updating: Example 1

$$
\begin{gathered}
p_{A B}(x, y)=p_{B A}(x, y) \\
p_{A B}(x, y)=p_{B A}(x, y) \\
\text { Renyi with } c_{0}=0: \quad f(q, z)=\frac{\lambda C(x, y)}{v} \quad p(x, y)=m(x, y)\left[\frac{\lambda C(x, y)}{v}\right]^{\frac{1}{v-1}} \\
p_{A B}(x, y)=p_{B A}(x, y)=p_{C}(x, y) \\
F\left(\lambda_{A} f(x)\right) F\left(\lambda_{B} g(y)\right)=F\left(\lambda_{A} f(x)+\lambda_{B} g(y)\right)
\end{gathered}
$$

This excludes all $\mathbf{v} \neq \mathbf{1}$ and leaves us with the Shannon-Jaynes distance!

Consistency upon updating: Example 2

$$
\begin{aligned}
& \begin{array}{l}
\left\{f_{i}\right\} i=1, N_{1} \\
<f>=w_{1} N_{1}^{-1} \sum_{i=1}^{N_{1}} f_{i}+w_{2}\left(N_{2}-N_{1}\right)^{-1} \sum_{i=N_{1}}^{N_{2}} f_{i} \rightarrow N_{1}^{-1} \sum_{i=1}^{N_{1}} f_{i} \rightarrow p_{1}(x) \\
\left\langle p_{12}(x)\right. \\
\begin{array}{l}
w_{12} \in[0,1] \\
w_{1}+w_{2}=1
\end{array} \\
\left\{f_{i}\right\} i=N_{1}+1, N_{2} \rightarrow<f>=\left(N_{2}-N_{1}\right)^{-1} \sum_{i=N_{1}}^{N_{2}} f_{i} \rightarrow p_{2}(x)
\end{array}
\end{aligned}
$$

Consistency upon updating requires that

$$
p_{12}(x)=w_{1} p_{1}(x)+w_{2} p_{2}(x)
$$

Intermediate Summary

The Shannon-Jaynes relative entropy is singled out, after all, by consistency requirements even when dependence on the derivatives is allowed, as THE information distance measure to be used in a learning rule:

$$
\begin{aligned}
& \int d x p(x) \ln \frac{p(x)}{m(x)}+\int d x p(x)\left[\lambda_{0}+\lambda C(x)\right] \rightarrow \min \\
& \lambda_{0}: \int d x p(x)=1 \quad \lambda: \int d x p(x) C(x)=d
\end{aligned}
$$

In practical applications, however, one rarely has prior knowledge in the form of a prior distribution; it is more likely to be in the form of data. In such cases the updating rule is useless but one can still utilize the derived unique information distance for identifying least-informative priors.

- Identify a generic operation invoking "information loss";
- Notice that the information loss should be (at least for small information content) proportional to the information content unless negative information is tolerated;
- Look for the least-informative prior (under given data constraints) as the one least sensitive to the operation above. The sensitivity should be defined consistently with the adopted information distance.
- The generic operation is coarse-graining:

$$
p_{\sigma}(x)=\frac{1}{\sigma} \int d x^{\prime} p\left(x-x^{\prime}\right) f\left(\frac{x^{\prime}}{\sigma}\right)
$$

- The information distance is the Shannon-Jaynes one:

$$
S\left[p, p_{\sigma}\right]=\int d x p \ln \frac{p(x)}{p_{\sigma}(x)} \xrightarrow{!} \min \text { (subject to data constraints) }
$$

Coarse-Graining $=$ Adding Noise

- Coarse-graining is equivalent to adding noise: $\quad p(x) ; \quad x \rightarrow y=x+\sqrt{\sigma} z: \quad p(x) \rightarrow p(y, z)$
- "Distance" between the original and the "noisy" probability distributions:

$$
\begin{array}{r}
S\left[p_{0}(y, z), p_{\sigma}(y, z)\right]=S\left[p_{0}(z), p_{\sigma}(z)\right]+\int d z p_{\sigma}(z) S\left[p_{0}(y \mid z), p_{\sigma}(y \mid z)\right] \\
p_{\sigma}(y \mid z)=p(x+\sqrt{\sigma} z)
\end{array}
$$

- For the Shannon-Jaynes distance:

$$
\begin{aligned}
S[p(x), p(x+\sqrt{\sigma} z)] & =-\int d x p(x) \ln \left[1+\sum_{n=1}^{\infty} \frac{\sigma^{n / 2} z^{n}}{n!} \frac{1}{p(x)} \frac{d^{n} p(x)}{d x^{n}}\right]= \\
& =z^{2} \frac{\sigma}{2} \int d x \frac{1}{p(x)}\left[\frac{d p(x)}{d x}\right]^{2}+O\left(\sigma^{3 / 2}\right)
\end{aligned}
$$

(just another instance of De Bruijn identity)
Essentially the same result holds for general Renyi v as well as for symmetrized SJ distance or the symmetric Bernardo-Rueda "intrinsic discrepancy".

$$
S\left[p_{0}(y, z), p_{\sigma}(y, z)\right]=\frac{\left\langle z^{2}\right\rangle}{2} \sigma \int d x \frac{1}{p(x)}\left[\frac{d p(x)}{d x}\right]^{2}+O\left(\sigma^{2}\right)
$$

Least-Informative Priors: Constructive MAXENT

Least-informative prior:
The probability density least-sensitive to coarse-graining subject to all available data constraints:

$$
\int d x p(x)\left[\frac{\nabla p(x)}{p(x)}\right]^{2}+\lambda \int d x p(x) C(x) \rightarrow \min
$$

Putting here $p(x)=\psi^{2}(x)$ and varying ψ we obtain theEuler-Lagrange equation

$$
-\Delta \psi(x)+\frac{\lambda}{4} C(x) \psi(x)=\Delta \psi(x)-\frac{2 m}{\hbar^{2}}[E-U(x)] \psi(x)=0
$$

This is a Schrodinger equation; non-relativistic Quantum Mechanics appears to be based on applying the constructive MAXENT to a system with given average kinetic energy, i.e. temperature!

Least-Informative Priors: Consistency Condition

$$
P_{1}(x)=P_{2}(x)
$$

Checks o.k.? In some cases, maybe! In general - not!
MAXENT B with no data = uninformative prior=problem!

Updating rule:

$\delta_{p}\left[\int d x p \ln \frac{p}{m}+\lambda \int d x p C(x)\right]=0$
$p(x)=m(x) \exp [-1-\lambda C(x)]$

Based on Shannon-Jaynes relative entropy

Constructive rule:

$$
\begin{gathered}
\delta_{p}\left[\int d x p(\nabla \ln p)^{2}+\lambda \int d x p C(x)\right]=0 \\
p(x)=\psi^{2}(x) \\
-\Delta \psi(x)+\lambda C(x) \psi(x)=0
\end{gathered}
$$

Based on Fisher information for the "location" parameter as a measure for sensitivity to coarse-graining

Summary

- Axiomatic characterization of both constructive and learning MAXENT is possible, based on the notion of information distance;
- The usual requirements for smoothness, consistency with probability theory and additivity narrow down the possible form of the information distance to Renyi - type one with an exponential Fisher-type modification factor;
- Additional requirement that different ways of feeding the same information into the method produce the same results pins down the value of the Renyi's parameter to 1 and excludes the derivative terms singling out the Shannon-Jaynes distance as the correct one;
- Since the information distance does not measure information content, I propose to consider the information content proportional to the sensitivity of the probability distribution to coarse-graining. If this is accepted, a unique constructive procedure for priors subject to available information results, involving the minimization of Fisher information under constraints.
- The constructive procedure, if taken seriously, has far reaching implications for the nature of those physics laws which can be formulated as variational principle. They may turn out to have very little to do with physics per se.

Thoughts

If we agree to use probability distributions (wave functions) to encode all knowledge we have about a system, there is no way of treating new information in the form of a constraint in any exclusive way: once the PD gets updated all mean values it predicts are treated on the same footing. Then, obtaining new information basically means feeding in generally inconsistent (with what the PD already predicts for the particular observable) data. The behavior of the MAXENT makes sense - the rule gives preference to the most up-to-date "data". This would be an insurmountable conceptual difficulty if we could actually obtain information in the form of mean values, which we can't.

Fisher Distance Proper and Quantum Mechanics

$$
\text { QM connection: } p(x)=\psi^{2}(x) \quad \psi(x)=\sum \theta_{i} \phi_{i}(x) \quad \int d x \phi_{i}(x) \phi_{j}(x)=\delta_{i j} \quad \sum \phi_{i}(x) \phi_{i}\left(x^{\prime}\right)=\delta\left(x-x^{\prime}\right)
$$

$$
\left\langle\psi_{1} \mid \psi_{2}\right\rangle=\int d x \psi_{1}(x) \psi_{2}(x)=\sum \theta_{i}^{(1)} \theta_{i}^{(2)}
$$

Distance based on Fisher metrics:

$$
\begin{aligned}
& D_{F}^{2}\left(p_{1}, p_{2}\right)=4 \sum\left(\theta_{i}^{(1)}-\theta_{i}^{(2)}\right)^{2}= \\
& =8\left(1-\sum \theta_{i}^{(1)} \theta_{i}^{(2)}\right)=8\left(1-<\psi_{1} \mid \psi_{2}>\right)
\end{aligned}
$$

Minimizing the Fisher metrics distance $=$ maximizing the QM overlap

$$
\int d x \sqrt{p(x) m(x)}=\int d x p(x)\left[\frac{p(x)}{m(x)}\right]^{-1 / 2} \sim \exp \left[S_{R}^{\nu=1 / 2}(p, m)\right]
$$

QM inference based on Hilbert space metrics (same as Fisher metrics) is equivalent to using MAXENT with $v=1 / 2$ Renyi distance, and thus it is guaranteed to eventually produce inconsistencies, i.e. paradoxes!

Variation for General Functional Form

$$
\begin{aligned}
& q(x) \equiv \ln \frac{p(x)}{m(x)} \quad S[p]=g\left(\int d x p f\left(q,(\nabla q)^{2}\right)\right) \\
& \delta \int d x p f\left(q,(\nabla q)^{2}\right)=\int d x \delta p\left[f+f_{, 1}\right]+2 \int d x p f_{, 2} \nabla q \cdot \delta \nabla q \\
& p \delta \nabla q=\nabla \delta p-\delta p \nabla \ln p=\nabla \delta p-\delta p \nabla \ln q-p \nabla \ln m \\
& \delta \int d x p f\left(q,(\nabla q)^{2}\right)=\int d x \delta p\left[f+f_{, 1}-2 f_{, 2} \nabla q \cdot(\nabla \ln q+\nabla \ln m)-2 \nabla \cdot\left(f_{, 2} \nabla q\right)\right] \\
& \nabla \cdot\left(f_{, 2} \nabla q\right)=f_{, 2} \Delta q+(\nabla q)^{2} f_{, 21}+2 f_{, 22} \nabla q \cdot \nabla \nabla q \cdot \nabla q \\
& \frac{\delta}{\delta p} \int d x p f\left(q,(\nabla q)^{2}\right)= \\
& =f+f_{, 1}-2 f_{, 2} \Delta q-2\left(f_{, 2}+q f_{, 12}\right) \frac{(\nabla q)^{2}}{q}-4 f_{, 22} \nabla q \cdot \nabla \nabla q \cdot \nabla q-2 f_{, 2} \nabla \ln m \cdot \nabla q
\end{aligned}
$$

$$
f+f_{, 1}-2 f_{, 2} \Delta q-2\left(f_{, 2}+q f_{, 12}\right) \frac{(\nabla q)^{2}}{q}-4 f_{, 22} \nabla q \cdot \nabla \nabla q \cdot \nabla q-2 f_{, 2} \nabla \ln m \cdot \nabla q=\lambda C(x)
$$

