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Reconstruction of electron spectra of medical accelerators from measured depth dose distributions
is an attractive tool for commissioning of a Monte Carlo treatment planning system. However, the
reconstruction method is an inverse radiation transport problem which is poorly conditioned, in the
sense it may become unstable due to small perturbations in the input data. Predicting the sharp
(delta-like) peak in the electron spectrum provides an additional challenge for the numerical recon-
struction technique. To improve efficiency and robustness of the reconstruction technique, we
developed an algorithm based on a separation of the electron spectrum into singular and regular
components. We approximate the singular peak of the spectrum by a narrow weighted Gaussian
function. The parameters of this Gaussian function are sought using only the fall-off and toe regions
of the depth-dose curve. Analytical representation of the spectral peak by a Gaussian has benefit
since only one weight and the mean and variance must be derived from the depth-dose curve
instead of multiple spectra weights. The regular part of the spectrum is reconstructed from the
residual depth-dose distribution using a variational method combined with a regularization tech-
nigue to avoid the nonphysical oscillations. The effectiveness of the method is demonstrated by
comparing predictions to “benchmark” spectra and depth-dose distributions from Monte Carlo
simulation of medical accelerators. @002 American Association of Physicists in Medicine.
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[. INTRODUCTION First, it does not require any supplementary equipment or
Energy spectra of medical accelerators significantly aﬁecpeta"ed knowledge of the tr.eatment head composition and
the pattern of dose distributions in patients undergoing radiogeomet.ry.-Sef:ond,. the equipment for measurgment .Of the
therapy treatment. Currently, electron spectra are taken intgc.)s.e d|st.r|but|ons is standard and aIready available in any
account implicitly using the measured central axis depth—d'n'c' Third, these metho_ds are comp_ut_atlonally f‘?St_' .
dose curve which is included into pencil beam algorithms. In _ Although a very attractive tool for clinical commissioning

the near future, more advanced Monte Carlo treatment plar2f @ Monte Carlo treatment planning system, reconstruction

ning systems may appear in clinics which will simulate theOf the phase-space distribution of an incident electron beam
3D electron—photon transport more accurately using cTirom depth-dose curves and lateral dose profiles is a difficult
defined patient geometry. Simulation of 3D electron transporfiimerical problem. The identification of the parameters of a
using CT numbers requires the energy spectra and angu|£§.dlatlon source with a limited number of external detectors
distribution of electrons from medical accelerators on theS akin toinverse radiation transport problemahich are
patient surface in explicit form. notorious for being poorly conditioned, in the sense they
Energy spectra and angular distribution of electrons fronfnay become unstable to small changes in the input data.
medical accelerators may be measured directly or obtaineifloreover, the computational finite arithmetic may impose
from the Monte Carlo simulation of the accelerator treatmengdditional practical limitations to the calculation algorithm.
head"? However, these two direct ways of obtaining the Also, the specific from of electron spectra provides an addi-
energy-angular distributions are not commonly implementedional challenge for the numerical reconstruction technique
into routine clinical praxis primarily because of the complex-because of the problems with shddelta-like energy peaks
ity of measurement and the knowledge base required for ruref direct electrons. Finally, inverse reconstruction of electron
ning Monte Carlo simulations. Therefore, many investigatordoeam parameters from depth-dose curves and lateral profiles
have tried inverse reconstruction to derive electron beam pds a multidimensional problem because their shape depends
rameters from the measured data such as the central axi both the energy and angular distributions of the incident
depth dose curves which are already included into the starelectrons.
dard commissioning procedure for medical acceleratdts. In this study, we consider only one part of this inverse
There are several advantages to using inverse reconstructigoroblem, namely the reconstruction of an energy spectrum
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from the central axis depth dose curve. We also suppose thatoximate this delta-like distribution by a weighted Gauss-
the energy deposition from the treatment head bremsstralian. The residual component of the spectrum that is smooth
lung is already subtracted from the total energy depositionand regular is reconstructed numerically using the spectral
Under these conditions, the problem reduces to the integrabeight approximation. The integral Fredholm equation of the
Fredholm equation of the first kind for the incident electronfirst kind is solved using a variational method combined with
spectrum and, in this sense, is similar to the previously condifferent regularization techniques to correct for the ill-
sidered reconstruction of photon spectfd.However, the conditioned property.
electron spectrum is distinguished by a high-intensity singu- The developed technique is applied to “benchmark”
lar component due to direct electrons and a low-intensityoroblems with known depth dose distributions and energy
regular component due to electrons scattered with large erspectra for a Philips-Elekta SL75-20 and a Varian Clinac
ergy loss. The difference between intensities in the singula2100C medical accelerators. The energy spectra and depth-
and regular components is several orders of magnitudelose distributions for these accelerators have been obtained
Therefore, the form of electron spectra and also the physicey Ding and Rogers using EGS4/BEAM Monte Carlo treat-
of electron transport require special approaches in the recomrent head simulatio. The Monte Carlo “benchmark” data
struction technique. have been selected for the validation of our reconstruction
It is a common procedure in the reconstruction of electrorfechnique because the electron energy distribution is avail-
spectra to introduce an energy grid and characterize the spegble over all the energy range. Also, the depth-dose curve
trum by its integrals over the energy bins. In this article, wedue to the treatment head bremsstrahlung is explicitly avail-
refer to this method as a spectral weight technique. The spe@ble in these calculations.
tral weight technique with different methods for solving the  The remainder of this article is organized as follows. In
integral Fredholm equation of the first kind was used bySec. ll, we describe the depth-dose models for reconstruction
Zhengming and Jetfe Faddegon and Blevis,and Deng of electron spectra, a variational method with regularization
et al® The spectral weight technique is universal because ifor solving the inverse problem for the depth-dose curve and
is suitable for simulation of any complicated form of energythe preparation of monoenergetic response functions using
spectra. However, it inevitably will have problems with the the discrete ordinates method. In Sec. I, we present an ana-
steep gradients and sharp peaks in an energy spectrum. Aldgiic singular component decomposition technique to im-
the spectral weight technique may become unstable becaupeove the accuracy of reconstructed spectra. In Sec. IV, we
of the ill-conditioning property of the integral Fredholm discuss the reconstructed spectra for different medical accel-
equation of the first kind which governs the reconstructionerators. Finally, we give conclusions in Sec. V.
procedure. The importance of the regularization techniques
to correct for the ill-conditioning property was pointed out
by Zhengming and Jetfe. Il. SOLVING THE INVERSE PROBLEM FOR THE
An alternative approach to the reconstruction of electrorELECTRON DEPTH-DOSE CURVE
spectra was used by I_(aw_rakcew a!'Y In this approagh, Pa- A, Equations for the electron depth-dose curve
rameters of the analytic trial functions are sought instead of
the multiple spectral weights. The form of the trial functions ~Reconstruction of an electron spectrum from a measured
can be easily selected because the general form of electr&gntral axis depth-dose distribution of a broad beam is based
spectra of medical accelerators is well known. The analyti©" humerical solutions to the integral Fredholm equation of
technique is stable if, of course, the number of trial functionghe first kind,
and their parameters are relatively small. The analytic tech- Emax
nique is more effective for the spectral peak and less effec- D(Z)=J f(E)d(z,E) dE, (1)
tive for the low-energy part of the spectrum because the low- 0
energy part has a complicated form defined by the electrowhereD(z) is the measured central-axis depth-dose distribu-
scattering from the treatment head and applicator. The lowtion in a water phantomf(E) is the electron spectrum of
energy part of electron spectrum cannot be described by acident electrons, and(z,E) is the depth dose distribution
simple analytic function with a few parameters. from the monoenergetic beam with energy In practical
The main goal of this article is to improve the accuracymeasurements, the depth-dose distributidfz) contains a
and robustness of electron energy spectra reconstructed frooomponent of the order of a few percent that is due to the
measured depth dose distributions. To achieve this goal, wieeatment head bremsstralung. Effective algorithms for the
develop a hybrid method which has the advantages inherediecomposition of energy deposition due to treatment head
to both the spectral weight and analytical technidl@se  bremsstrahlung already have been considered by Faddegon
main idea of the method is based on the fact that a largand Blevié and Denget al® In this article, we suppose that
component of the electron spectrum can be described by the depth-dose distribution due to treatment head bremsstrah-
simple analytical function and separated from the numericalung is already subtracted from the total depth-dose distribu-
reconstruction. These electrons are mostly direct electrontson.
which did not undergo scattering with large energy loss. The For the numerical approximation of E(L), we introduce
delta-like distribution of direct electrons presents a majoran energy gridE,,_1/2,En12], N=1,...N, whereE;,»=0,
problem for the numerical reconstruction techniques. We apEy ;1= Emax @ndE,=0.5(,_ 1o+ En112), N=1,..N. We
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suppose that the energy intervals are narrow enough that a) 6 MeV
within each interval the following condition holdsl(z,E) 120 T Moot

~d(z,E,) whered(z,E,) is the depth dose distribution from —— EGS4/BEAM
a monoenergetic source with energy,. Then integrating Sl
Eq. (1) over the energy grid we obtain a numerical approxi-
mation

N

D(z)zgl wod(z,E,), (2)

%dose

where the spectral weightg,,, n=1,...N, are given by

Entus
Wn:f "HE)E, n=1..N. 3) Depth (cm)
En_
. . b) 9 MeV
In the approximation given by Eq$2) and (3), reconstruc- —-+— Monadirectional broad beam

tion of the incident electron spectrum reduces to that of find- o EGSu/BEAM

ing a discrete number of spectral weights, n=1,...N.

The model for calculation of monoenergetic depth dose
distributionsd(z,E,,) significantly affects the accuracy of the
reconstructed spectra. For instance, electrons incident on the
patient surface are characterized not only by the energy spec-
trum but also by significant angular spread. It is usually sup-
posed that the form of the depth-dose distribution is mostly
due to the energy spectrum and is not affected by the angular
spread®™® In this approximation, the monoenergetic depth-

%dose

dose functiord(z,E,,) can be calculated in theZ geometry 0 ! 2 3 4 5 8 7
. . . Depth (cm)

with the point source on the axigor in the parallel broad

beam geometry using an inverse square factor. Both models 120 c) 18 MeV

correspond to a monodirectional source at the phantom sur- —— Monodirectional broad beam

face. Definitely, theRZ geometry is more accurate but the 100 ] o EGS4/BEAM

parallel broad beam geometry is less expensive. Because the

parallel broad beam geometry is less expensive a higher pre- 80 1

cision for the depth-dose distributions can be achieved for
the same computational time.

To verify accuracy for the parallel broad beam model and
to investigate the influence of the initial angular spread on
the depth-dose distributions, we have compared depth-dose
curves from complete EGS4/BEAM simulations and simula-
tions in the parallel broad beam geometry using input EGS4/ - e
BEAM incident spectra. The coupled electron—photon trans- o 1 2 3.4 5 & T 8 9 10 11 12
port in the parallel broad beam geometry with EGS4/BEAM Depth (cm)
spectra was simulated using the standard discrete ordinat|e_s . . .

% CEPXS/ONELD-1.0 that is discussed later in thi 1G. 1. Comparison of the central axis depth-dose curves calculated using
pa_c age : 5 $he EGS4/BEAM code for 62), 9 (b), and 18(c) MeV electron beams from
article. An example of such a comparison for 6, 9, and 1& varian Clinac 2100C acceleratbrand the depth-dose distributions of
MeV beams from a Varian Clinac 2100C accelerator is premonodirectional broad beams with identical incident energy spectra. The
sented in Fig. 1. The depth-dose distribution of treatmen entral depth-dose curves from the EGS4/BEAM simulation are corrected

s For the treatment head bremsstrahlung and the divergence of electron beam.
head bremsstrahlung was subtracted from the central axighe monodirectional broad beam simulation is performed using the discrete
depth-dose curves simulated using the EGS4/BEAM codeordinates package CEPXS/ONELD-1.0 with the incident electron spectrum
Also, these central axis depth-dose curves have been codgken from EGS4/BEAM treatment head simulation.
rected for the inverse squared factor.

The agreement between EGS4/BEAM and CEPXS/

ONELD-1.0 simulations is almost perfect for the 9 and 18comparison that the parallel broad beam geometry is accept-
MeV beams in the fall-off and toe regions of the depth-doseable in the simulation of the monoenergetic depth-dose func-
curve. This is the region where the difference is expected ttionsd(z,E,).

be significant due to the different treatment for the diver- The curves simulated in the parallel broad beam geometry
gence of the electron beam. Thus, we can conclude from thi®llow closely those simulated with the EGS4/BEAM code,

60 4

%dose

20
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so the form of the depth-dose curves is primarily due to thevheref,(E) is the energy spectrum ang () is the angular
form of the incident energy spectra. However, there is disdistribution, we obtain for the depth dose distribution an
crepancy of the order of few percent in the plateau regiorequation similar to Eq(4) with the elementary depth-dose
which increases as the surface is approached. This discregistributions given by

ancy cannot be explained by the divergence of the beam
since the inverse square factor approaches zero at the sur-
face. Therefore, we conclude that the large angular spread of .
electrons scattered with large energy loss has a noticeable d(ern):f d(z,,E ) xn(@) du. (7)
influence on the shape of the depth-dose distributions. For 1

the 6 MeV beam, there is also a discrepancy in the fall-off

region because at this low beam energy the angular spread is

significant even for the direct electrons. The weighting of the depth-dose distributions with the angu-

If the mo_nod|rect|onal depth-dose curves are used for the, distributionsy, (), n=1,...N, is important for the re-
reconstruction of energy spectrum from the measured Ofqgngiryction of the low-energy part of the spectrum where
EGSA4/BEAM central axis depth dose curve, this will resultg|ecirons have considerable angular spread due to scattering
in an “effective” energy spectrum. In the “effective” energy o the applicator. It is less important for the reconstruction

spectrum, the effect of initial angular spread is simulated byt yhe high-energy part of the spectrum where electrons have
“softening” of the spectrum, so the “effective” energy spec- a small angular spread due to scattering in air.

trum will produce a desirable depth-dose distribution. How- The reconstruction of an energy spectrum given by the
ever, it is not clear how this art|f|C|aI “softening” of j[he weightsw,,, n=1,...N, and the angular distributiong, ().
spectrum will affect the lateral profile and the accuracy in 3Dn=1 N, may be considered as two separate problems
calculations. If 1% dose/1 mm position accuracy is a goal forFirst,"\.Ne’ determine the angular distributiong(x), n '
the electron dose calculations, the initial angular spread must | ’ N, and find the weighted depth dose distribution

be taken into account in the spectrum reconstruction Procérp . second. solve Eq2) for the spectral weights. The
dure. main goal of this article is to find an accurate and robust

Instead of the energy spectrum alone, the incident eleCtrOQIgorithm for solving Eq/(2). So, we will suppose that the
beam should be characterized by the angular—energ;ihcidem electrons do not have the angular spread, i.e., the

dependent electron sour€E, ) whereu=cosf and @ is angular distribution isy, ()= 6(u—1), n="1,...N. Also, to

:ir;en ?)?gtfebire;tzvivde:nrl gzcrtlgrr??ll_gg Z‘r?e\;vatinsduggcﬁlspged';en%érify our algorithm, we use the depth-dose curves which are
. . ‘ gy e g PENalculated with the EGS4/BEAM spectra and for monodirec-
dence of this source simulates the scattering of electron bea

C fnal electron beams.
in air and from the components of the treatment head andon® €lectro beams

applicator. If the angular distribution of the electron source is
assumed to be asymuthally symmetric, then the depth dose
distribution from this source may be expressed as follows,

B. A variational method with regularization

n
D(z)szmaxf 1Q(,LL,E)E(Z,,M,E) du dE, (4) Solving the integral Fredholm equation of the first kind
0 -1 for the electron spectrurf(E) is possible using several nu-
merical techniques. In application of these techniques, it
where the energy-angu|ar depth-dose funcEOnM'E) rep- should be recognized that the integral Fredholm equation of
resents the dose distributions from the monoenergetic e[,he first kind is ill conditioned on the depth-dose distribution
ementary sources with enery and angle of incidencg,,  D(2). This ill-conditioned property may produce large non-
physical oscillations in the reconstructed specti(fs) due
to small errors in the depth-dose distributibriz) and trun-
cation errors of the numerical techniques. The amplitude of
oscillations may vary from one method to another and even
Obviously, the complete reconstruction of the initial energy—can pe reduced by use of adaptive energy grids, as was done
angular distributiorQ(E, u) using only a depth-dose curve py Faddegon and BlevsHowever, the results will be un-

D(2) is not possible. The angular distribution must be deterstaple and unpredictable if the source of these oscillations,
mined from an analysis of the lateral dose profiles or a simynich is in the equation itself, is not removed.

plified consideration of the treatment head. Then, it should Tnhe jll-conditioned property of the integral Fredholm

be taken into account in the reconstruction of electron SP€Gsquation of the first kind can be demonstrated by implemen-
tra. If the energy—angular distribution of incident electrons ini5tion of a high-frequency perturbation with a limited ampli-
each energy intervalE,_1/2,Ens12] IS expressed in the ,qe 5f(E) = exp(wE), >0, into the spectruni(E). Sub-
form stituting this perturbation into Eq(1) and integrating by
parts we obtain for the corresponding perturbation in the
Qn(u,BE)=Ff (E)xn(®), n=1,.N, (6) depth dose distribution

q(u,E)=(E—Ep) 6(u— uo). 5)
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o0 20 MeV, Philips-Elekta SL75-20 where D(z) is the measured depth dose distribution,
Q[ f(E)] is the regularization function, and is the regu-
” — ;‘:foi"s‘t:fcmﬂ‘s';‘ectmm larization parameter. The non-negative sourg) that will
§ minimize the objective functio® [ f(E)] will give a solu-
2 tion to the inverse problem of the depth-dose curve. We write
g 1ot this problem as
e}
g minO,[f(E)], subject tof(E)=0. (10)
% The regularization functiofi),[ f(E)] in Eq. (9) is given
o
24

by

1e-2 1

(11)

Emax | _ d“f(E))\?
’ Qm[f<E>]=fo dE2, pk(E)(Tl(Ek_> :

Energy (MeV)

where p(E) is a positive continuous weighting function
Fic. 2. Comparison between the incident electron spectrum and the spedvhich is usuallyp,(E)=1. The stabilizing function withm
trum reconstructed from the depth-dose distribution in water using the spec=(Q corresponds to theveak regularization that provides
tral weight techni i ization. inci i
o o e o s S EoE3only meai Squared convergertE)  1(E). The stabilz-
acceleratot! ing function withm=1 corresponds to thetrongregulariza-
tion that provides uniform convergence of the energy spec-
trum f¢(E)—f(E) together with its derivatives of the
maximum order (h—1). In practical calculations, they use
values not higher tham= 1 because the values>1 lead to
excessive smoothing of the reconstructed function. The regu-
larization parameter in Eq. (9) is commonly selected by

Emax .
5D(z)=f d(z,E)e'“EdE
0

_ 1 e Emme L [Emaxdd(Z,E) | o visual control. The smallest value af is selected which
=—e'“*d(z,E)|, . ——€'“FdE » . o )
i iw JE mitigates the nonphysical oscillations in the reconstructed
spectrum.
=O<E _ ®) The minimum of the objective function given by E®)
w is found using the L-BFGS-B code which has been devel-

The perturbationsD(z) = O(1/w) can be very small for the oped at the Opt_imization Technology Center, a joint ve_nture
high frequencies>> 0. It follows from this analysis that very ©f Argonne National Laboratory and Northwestern Univer-
small perturbations in the depth-dose distribution can proSity: The code is based on the L-BFGS-B algorithm which is
duce large high-frequency perturbations in the spectrum. Ift limited-memory version of the quasi-Newton method with
the errors of the depth dose distributions are negligible, busimPle constraints on the vanabl?s?l‘he method is very
the problem is solved numerically, truncation errors are in-Convenient for practical use because it requires only an ob-

evitable. Again, it can lead to large errors in the Spectrumjective function and its derivatives as input to perform the
Figure 2 shows large periodic oscillations in the recon-Minimization search. The gradients for the objective function

structed electron spectrum generated by small errors in th@Ven by Egs(9) and(11) are presented in Appendix A.
depth-dose distribution and, probably, by numerical approxi- Examples of the iterative numerical reconstruction of

mations. The incident electron spectrum used for this figur&/€ctron spectra are shown in Figga8and 3b). The itera-

corresponds to the 20 MeV electron beam from a Philips—tive processes have identical initial particle distribution. We

Elekta SL75-20 acceleratdt. see that the reconstruction without regularizafibig. 3a)]

To correct for the ill-conditioned property of the integral IS Unstable and the reconstruction with regularizafiry.
Fredholm equation of the first kind, special regularization3(P)] is stable. The benchmarch problem is for the 20 MeV

techniques have been developed. The main idea of the&dectron beam from a Philips-Elekta SL75-20 accelerator.

methods is to find a stable operator with a solution that ap-

proximates the solution to the integral Fredholm equation oE. Generation of the response function
the first kind. In this article, we apply a variational method ¢ giscrete ordinates method

for solving Eq.(2) where a least squares objective function is

minimized using simple constraints on the spectrum. A spa- One of the key elements in the numerical solution of Eq.
tial Tichonov’s regularization function is included into the (1) is an adequate approximation of the response function
objective function to achieve stability of the reconstructedd(z,E) by a set of monoenergetic depth-dose curves

spectrunt? The final equation for the objective function is 9(z.En), n=1,..N.  First, the energy intervals
given by [En_12,Ens12], n=1,...N, must be narrow enough to ac-

curately approximate the reconstructed spectrum and the

0, [f(E)]= fz’“ax(g(z)_ D(2))2dz+aQ, [f(E)], (9) _equationd(z, E)~d(zE,) mL!s_t be valid within each energy
0 interval. Second, the precision of the depth-dose curves

d(z,E) using
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electrons, the total number of depth-dose curves in the algo-
rithm should be 28200=4000. Therefore, the calculation
of the dose functiongi(z,E) and d(z,u,E) is a specific
transport problem where a great number of depth-dose dis-
tributions must be calculated in a very simple geometry and
with very high precision.

The monoenergetic depth-dose curves can be calculated
using the condensed-history Monte Carlo method which is
considered a standard numerical technique for the coupled
electron-photon transport. Deterministice., nonstochastjc
methods for the coupled electron-photon transport are also
available!* Despite the promising theoretical consideration
of Borgers®® deterministic methods are still less effective in
complicated geometries than Monte Carlo methods. How-
ever, they may be more efficient than the Monte Carlo
method for some specific problems in simple geometries. For
instance, the response functid(z,E) can be simulated very
fast with high accuracy using the discrete ordinates method.

The discrete ordinates method is a deterministic method
for explicitly solving the Boltzmann transport equation.
Standard discrete ordinates codes find numerical solutions to
the transport equation using &y approximation in anglén
_‘ angular segmenksa multigroup approximation in energy,
et i and some form of spatial differencing. The discrete ordinates
solution converges to the analytical solution as more groups,
spatial meshes, and discrete angles are employed. One of the
advantages of the discrete ordinates method is the accuracy
with which the particle distributions are generated. This ac-
curacy is usually defined by the convergence parameter for
the iterations on the scattering source and is of the order of
0.01% in all calculational regions. In the Monte Carlo calcu-
lations, a precision of 1% at the maximum of the electron
depth-dose curve is considered acceptable. The precision can
be worse in the fall-off and the toe regions of the depth-dose
curve which are characterized by deep penetration of par-
Fic. 3. Examples of the iterative numerical reconstruction of the electrurticles. Another advantage of the discrete ordinates method is
spectrum without regularizatio@) and using regularizatiotb). the speed of calculations. In the predictions of the depth-dose

distributions, the discrete ordinates method can be 50 times

faster than the Monte Carlo meth&8:*8The extremely high
d(z,E,), n=1,...N, must provide accurate calculation of the accuracy and calculational speed of the discrete ordinates
gradients for the objective function and uniform convergencemethod motivated us to use this method for the generation of
of the iterative search process. Our experience shows thattae response functiod(z,E).
uniform discretization with energy steps of 0.125 MeV from  The coupled electron—photon transport calculations in
0 to 25 MeV(i.e., 200 monoenergetic depth-dose cupies this article were performed using the package CEPXS/
adequate for accurate reconstruction of the electron spect@NELD-1.0 which is based on the multigroup discrete ordi-
from medical linear accelerators. Further refinement of théyates method®*® The package CEPXS/ONELD-1.0 was
energy grid does not improve the reconstructed energy spegeveloped for simulation of the coupled electron—photon
tra. transport in one-dimensional geometries. It consists of the

However, if the angular distributiog,(x), n=1,...N, of  code CEPXS for the preparation of the coupled multigroup
incident electrons must be taken into account, the angulaiglectron—photon crosssections and the general purpose one-
energy-dependent response functaz, u,E) must be cal- dimensional Boltzmann transport solver ONEDANT which
culated. The angular-energy-dependent response functiofas previously developed for solving the neutron—photon
d(z,u,E) must be folded with angular distributiong,(x),  transport problems. The CEPXS/ONELD-1.0 discrete ordi-
n=1,..N [see Eq.(7)], to produce depth-dose distributions nates package solves the time-independent coupled electron—
of improved accuracy. In this case, calculation overhead wilphoton—positron problems in plane, spherical, and cylindri-
significantly increase. For instance, using 20 angular pointsal geometries. For the neutral parti¢ihoton transport the
from 0° to 90° to approximate the large-angle scattering oBoltzmann equation is solved

1e-1

1e-2

sopwed 10 soquinN

sopwed 1 soquinN
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% DD scheme, the LD scheme can become negative in compu-
Q- V¥, +30¥,= fo dE/L dQ'x, (r,E'—E, tational cells with very steep gradients of solution. Usually,
7 this problem is solved using nonlinear correction algorithms.
Q'-Q)¥ (r,E",Q") The adaptive LD scheme is one of the ways to obtain a
B positive numerical solution without deterioration of source
+f dE’f dQ'S,(r,E'—E, convergence inherent to other nonlinear algorithirfS.De-
0 4w spite the fact that the nonlinear correction techniques for the
, R LD scheme are theoretically available, the implementation of
Q- Q)Wo(r.B%.QY, (12 them into discrete ordinates codes is not easy because of
and for the charged particlelectron and positrgriransport  problems with consistency in acceleration methods. None of
the Boltzmann-CSDOcontinuous slowing downequation is  the nonlinear corrections is available in the ONELD code.

solved Therefore, the only way to avoid the negative solutions is to
P further refine the spatial grid.
Q- VU +35V = — E[Se(r,E)\Ife] The Boltzmann-CSD equatiofi3) was derived for solv-

ing the charged particle transport problems because the
“soft” collisions with atomic electrons cannot be handled in

+J dE' | dQ'Zcdr,E'—E, the P_ and multigroup approximations. Also, differential
0 am cross sections are not adequate in this “soft” region, so only
Q- Q)P (r,E'" Q") the moments of the cross sections can be estimated. A special
technique was developed to solve the Boltzmann-CSD equa-
+f°°dE,J' dQ'S (r,E'—E tion (13) using the standard discrete ordinates Boltzmann
0 4m ven ' solvers as ONEDANT-LB? The electron—photon cross sec-

, . tions in the multigroup ané, Legendre approximations for
Q- Q¥,(r.E", Q). (13 solving the Boltzmann and the Boltzmann-CSD equations by

In Egs. (12 and (13, V.=V (r,Q,E) and ¥, the ONEDANT-LD code are generated by the CEPXS code
=WV (r,Q,E) are the spatial-angular-energy distributions ofusing the same physical interactions which are usually taken
electrons and photong{=3¢(r,E) and%{=3](r,E) are into account in Monte Carlo calculations.
the total cross sections for electrons and phota@ns(r,E’ Lorenceet al. demonstrated the accuracy and computa-
—EQ'Q) and X (r,E'—E,Q'Q) are the electron-to- tional speed of the CEPXS/ONELD-1.0 package by com-
electron and photon-to-photon differential in energy andparison to the Monte Carlo predictions and experimental
angle cross sections} ¢(r,E'—E,Q'Q) and X (r,E’ data!® The Monte Carlo predictions were obtained using
—E,Q'Q) are the electron-to-photon and photon-to-one-dimensional codes of the Integrated-TIGER-Series
electron differential in energy and angle cross-sections, andTS). However, we find it useful to additionally compare
Se«(r,E) is the restricted stopping power which is the zerothCEPXS/ONELD-1.0 and Monte Carlo predictions in the
moment of the collisional and radiative cross sections withproblems which are specific to medical physics applications.
small energy transfers. These problems usually include water phantoms with bone-

In the ONEDANT code, the Boltzmann transport equationlike heterogeneities and the energy of incident electron
(12) is solved by discretization of energy, space, and angulapeams up to 20 MeV. Such a comparison for a water phan-
variables. The multigroup approximation for the energy detom and a water phantom with a slab SB3 bone-like hetero-
pendenceS, discrete ordinates approximation for the angu-geneity is presented in Fig. 4. The normally incident broad
lar flux, and the LegendrB, expansion for the angular de- electron beams are monodirectional and monoenergetic with
pendence of cross sections are standard options in ttenergies 1QFig. 4a] and 20[Fig. 4b)] MeV. The bench-
discrete ordinates transport codes which have been used forark problems and EGS4 calculations are from Neuen-
many years in neutral particle transport. A revision of theschwandeset al?* The agreement between the Monte Carlo
ONEDANT code called ONEDANT-LD is recommended for and discrete ordinates predictions is excellent, especially
solving the coupled electron—photon transport problemswhen it is taken into account that the numerical approaches
This version is based on the third-order accuracy linear disfor the nuclear crosssections and particle transport are quite
continuous(LD) spatial discretization. The LD spatial dis- different.
cretization provides numerical solutions of better quality, es-
pecially in the deep penetration problems, if compared to théll, DECOMPOSITION OF THE SINGULAR
standard second-order diamond differefb®) spatial dis- COMPONENT
cretization. The final system of simple linear equations isA c lete d i
solved iteratively with use of the S2 synthetic acceleration ™ omplete decomposition
technique. The accuracy of solutions is defined primarily by Electron energy spectrum from a medical accelerator may
the convergence of the iterative process and is of the order dife separated into singular and regular components. The high-
0.01%. intensity singular component with delta-like energy distribu-

Having a better approximation order and improved mono-ion is due to direct electrons. The low-intensity regular com-
tonicity and positivity properties compared to the standarcponent is due to electrons which are scattered with large
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a) 10 MeV electrons

—— CEPXS/ONELD-1.0 ($B3)

contains most of the electrons forcing the regular component
to be affected by the numerical “noise” of the reconstruction

—  CEPXS/ONELD-1.0 (water)

* EGS4(S83)
o EGS4 {water)

technique.(4) The contribution of the fall-off region of the
depth-dose curve to the least squares objective function is
smaller than that of the plateau region. The contribution of
the toe region of the depth-dose curve, critical for accurate
reconstruction of the singular component, is much smaller.
This means, that the gradient search is more accurate in the
plateau region of the depth-dose curve for the objective func-
% tion given by Eq.(9). Theoretically, the problem could be
. overcome by implementation of an importance weighting

\h factor 1(z)=1/[D(z)]? into the objective function which
would make all regions of the depth dose curve equally im-
portant in the objective function. We found, however, that
this approach does not significantly improve the accuracy of
reconstructed spectra.

It was concluded that the spectral weight technique might
be very effective for the reconstruction of the regular com-
ponent when the singular component is not present. This
motivated us to use a hybrid reconstruction technique where
the singular and regular components are processed using dif-
ferent approaches. We consider the electron energy spectrum
as a sum of the singuldf*q E) and the regulaf™YE) com-
ponents:

4.0 | o‘"{““t%

3.5 4

3.0 {

2.5 4

2.0 1

dD/dz, MeV cm/g?

00 05 10 15 20 25 30 35 40 45 50 55 60

zZ,cm

4.0
I ~— CEPXS/ONELD-1.0 (583)
~— CEPXS/ONELD-1.0 (water)
q\ e EGS4(SBI)
o\ °  EGS4 (water)

3.5 1

3.0 4

2.5 1

2.0 1

dD/dz, MeV cmig?

f(E)=fS"YE)+ f°YE). (14

0.5 4

Correspondingly, for the depth dose distributibr{z) we
have

0.0

D(z)=D%"Yz)+ DY z), (15)

Fic. 4. Comparison between the depth-dose distributions in homogeneous sin . .
and heterogeneous phantoms calculated using the EGS4 Monte Carlo cowdere D°"(z) is the depth-dose from the singular compo-
and the CEPXS/ONELD-1.0 discrete ordinates package for 10 Mesind ~ nent fS"Y E) of the spectrum an®"¥z) is the depth-dose
20 MeV (b) monoenergetic and monodirectional broad electron beams. Therrom the regmar componerifeg( E) of the spectrum
EGS4 Monte Carlo simulations are taken from Neuenschwaeidat?? . . o
Instead of the spectral weight technique, the singular
component of the spectrum is reconstructed using a single
nalytical function. In this article, we approximate the singu-
energy loss from the treatment head components and appli- .
. X ar component of the spectrum by a narrow weighted Gauss-
cator. The singular component contains most of the electrons .
) . o . ian function,
so the difference of intensities in the regular and singular
components is of several orders of magnitude. However, the
regular component plays a significant role in the dose distri- fSNYE) =\
butions because the integral number of electrons in this com- 270
ponent is also significant. _

Because of the specific form of the electron spectra thavhereEq ando are the mean energy and the variance &nd
reconstruction technique based on the optimization of speds a weighting factor. If the spectrum is normalized to one
tral weights with regularization is not always effective. Thereparticle, the weighh shows the relative number of particles
are several reasons for thiét) The technique of spectral in the singular component and the weight{1) shows the
weights seems to be inefficient in describing the steep gradrelative number of particles in the regular component. For
ents associated with the spectrum’s very sharp energy peatie weighted Gaussian, only one weight and the mean and
Further refinement of the energy grid does not improve the/ariance must_be derived fron_1 the depth dose distribution
accuracy because of the unavoidable errors in measurdastead of multiple spectral weights. _
depth dose distributions and computed monoenergetic re- Parameters of the analytic approximation for the singular
sponse functiong2) It is well known that the regularization component are found using only the fall-off and toe regions
technique has a drawback of smoothing sharp peaks in @f the depth-dose distribution. The parametggs o, and\
reconstructed function. Therefore, the spectral weight techin Eq. (16) are found from the condition that the singular
nique with regularization is not capable of reproducing thedepth-dose componed®"{z) approximates the fall-off and
energy peak in the electron spectrufB) the spectral peak toe regions of the total depth doBgz) as it is shown in Fig.

e—(E—Eo)Z/ZUZ, (16)
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a) is found as a difference between the total depth-ddég)
25 and the singular depth-dose compon&it'{z). Applying
T Lol depin duse distnoution the numerical reconstruction technique to the regular depth-
— — Dose from singular component

------ Dose from reguiar camponent dose componenbd™Yz) we find the regular component of
the spectrd"*YE).

2.0

B. Partial decomposition

It should be noted that the complete separation of the
singular component as it is shown in Figapis character-
0.5 ized by a separation depth, which corresponds to the

B maximum range for electrons from the regular component.
, , , : , , Because the separation depth,is less than the maximum
0 1 2 3 4 5 6 7 depth of penetration,,,,, there is also a separation energy
Depth (cm) Esep<Emax in the reconstructed spectrum that separates the
regular and singular components. It is difficult to obtain a
b) smooth junction between the regular and singular compo-
—— Total depth dose distributon nents in the poinEg, using complete separation of the sin-
— — Dose from singular component gular component because any numerical algorithm will have
2 I N Bose from eguiar component problems with steep boundary conditions. Despite the non-
physical perturbations, the junction region does not have sig-
nificant influence on the accuracy of the depth dose distribu-
tions. However, we try to avoid them using a partial
separation of the singular component.

In the partial separation, a part of the singular component
is transferred to the regular component and reconstructed nu-
merically using the spectral weight technique. After deter-
mining the parametens, o, andE, of the weighted Gaussian
0 i 2 3 4 5 6 7 function given by Eq(16) from the complete separation, we

Depth (cm) chose a new weighting parameter 7\ (0<7<1) and cal-
Fic. 5. Complete(a) and partial(b) decomposition of the singular dose culate new depth-dose distributiofi3™{z) and D"4z).

component from the total depth-dose distribution. The total depth-dose disObViously, the valuer=0 corresponds only to the numerical
tribution is for the 10 MeV electron beam from an Philips-Elekta- SL75-20 reconstruction technique that uses the spectral weights. The

acceleratot! value 7=0.8 was used in the calculations presented in this
article. An example of partial separation is shown in Fig.
5(b). We see that the electrons from the regular and singular

5(a). The computational algorithm for solving this problem is components penetrate till maximum de@h,, so there is

based on the minimization of the following least squaredno separation deptizs.,, Consequently, electrons in the

dD/dz (MeV/cm)

0.0

25

dD/dz (MeVicm)

0.5 1

"0.0

objective function regular and singular components have the same maximum
, energyE axand we avoid the problem in the junction region.
D[ fsiny E)]:f 2(5(2)_Dsing(z))2 dz, (179  The energy spectra reconstructed from the depth—dose dis-
2] tributions in Fig. 5 are analyzed in Sec. IV.

where the coordinates;, and z, determine the region with
dose deposition due to the singular component. The minimitV. RESULTS
zation problem

min®[f*"YE)],  subject to F"YE)=0, (18 The reconstruction technique developed was applied to
is solved using the same L-BFGS-B optimization routine“benchmark” depth dose distributions which were calculated
which is used for the spectral weight technique. Howeverusing the CEPXS/ONELD-1.0 code in parallel broad beam
the optimization with an analytical Gaussian function doeggeometry. The incident electron spectra have been taken
not require a regularization technique and is based on onlfrom EGS4/BEAM treatment head simulation for Philips-
three variablesg,, o, and A. The gradients for the Elekta SL75-20 and Varian Clinac 2100C accelerators. As
L-BFGS-B algorithm which correspond to the objective shown in Fig. 1, the difference between depth-dose distribu-
function given by Eq.(17) and the analytical function tions calculated using CEPXS/ONELD-1.0 in parallel broad
fS"Y E) given by Eq.(16) are presented in Appendix B. beam geometry and complete EGS4/BEAM simulations is

The regular part of the spectrufff{E) is reconstructed very small and is primarily due to the initial angular spread
using the spectral weight representation from the residuabf the incident electrons. In this article, we do not consider
depth-dose distribution. The regular dose compoiEff{( z) the angular spread of incident electrons and use monodirec-

A. Computational parameters and grids
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tional depth-dose functiord(z,E,). Therefore, to make the a)
numerical experiment on the reconstruction of electron spec- 11
tra absolutely “pure” we use depth-dose distributions calcu- 1.0 1
lated in the same geometry as the functid(g,E,,). Apply- 0.
ing the reconstruction algorithm with the monodirectional
functions d(z,E,) to the EGS4/BEAM depth-dose curves
produces “effective” energy spectra which account for the
initial angular spread of the incident electrons.

The monoenergetic response functionKz,E,), n
=1,...N, have been calculated using the CEPXS/ONELD-
1.0 discrete ordinates package over the energy interval
0.5-27 MeV with energy step 0.125 MeV, so the total num- S
ber of depth-dose curves whis=213. Further refinement did 0 1 2 3 4 5 6 7 8 9 1011 1213 14 15 16
not improve the accuracy of the reconstructed spectra. The
accuracy of the calculated monoenergetic depth-dose curves
was 0.01%, which corresponds to the convergence criterion b)
of the discrete ordinates method. The depth-dose distribu- 1
tions were calculated in the space region from 0 to 15 cm for 101
all energies, so the bremsstrahlung “tail” was accurately
simulated up to a depth of 15 cm.

The coupled electron—photon transport was simulated us-
ing 50 equidistant energy groups for electrons and 30 equi-
distant energy groups for photons. The cutoff energy for
electrons was 0.1 MeV. Ars;, Gauss quadrature with 32
angular intervals was used for approximation of the angular 02
flux and aP3; Legendre expansion was used for the angular 014
dependence of the electron and photon cross-sections. The ;| strprrapmmmmmmnss |
spatial dependence of the particle flux was calculated using 0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16
60 spatial meshes from the surface to the maximum range of Energy (MeV)
electrons and 20—30 spatial meshes for the breamsstrahlung _

“al" The calculational ime on a PENTIUM 111500 MHz 55, The gty an sbautscompotens o e ecton nectun for e
computer was around 60 s for this discretization. Furthekated singular and regular componerits;; sum of the regular and singular

refinement of the calculational grids did not improve the ac-components. The decomposition into regular and singular components cor-
curacy of depth-dose distributions. Ir:eizp(l;(nb(;s to the decomposition of the depth-dose distribution presented in

The minimum of the objective functions based on the =
spectral weights and the weighted Gaussian function was
found using the L-BFGS-B algorithm, which is a version of
the deterministic quasi-NeWton algorithm with simple CON-B. Analysis of the reconstructed spectra
straints on the variables. For the objective functions and
number of variables considered in this article, the typical
calculational time is a few seconds on a PENTIUM Il 500

Incident spectrum

—o— Regular component
—o— Singuiar component
0.8

0.7 1
0.6
0.5
0.4 1
0.3 1
0.2

Relative number of particles

0.1 1

Energy (MeV)

Incident spectrum

0.9 4 —o— Reconstructed spectrum
0.8
0.7
0.6 4
0.5
0.4 4

0.3

Relative number of particles

Figure 6 shows the singular and regular components of
electron spectruFig. 6(a)] and the total electron spectrum

. . . . [Fig. 6(b)] which have been reconstructed from the depth-
MHz computer. To find an optimal solution, the algorithm dose distribution presented in Fig. 5. The incident electron

uses as input the depth-dose curve and, additionally, thgpectrum corresponds to the 10 MeV electron beam of a

regularization parameter for the objective function given Philips-Elekta SL75-20 accelerator. Theaxis is linear in
by Eq.(9) and the depth coordinateg andz, for the objec- g piot to show the real ratio of the regular and singular

tive function given by Eq(17). We found that the parameter omnonents. The regular component of the reconstructed
«=0.125 is suitable for regularization of any electron spec-gpactrum does not have noticeable nonphysical oscillations
tra if the energy bina\E=0.125 MeV are used for approxi- ang approximates the low-energy part of the incident spec-
mation of the integral Fredholm equation of the first kind. t,um with good accuracy. The reconstructed singular compo-
We also have to mention that weak regularization with tth]ent is S||ght|y shifted to the low energies and the FWHM

simplest weighting functiop(E)=1 was effective enough, (full width at half maximum is slightly overestimated. How-

so we did not use the strong regularization. The depth coofever, these discrepancies do not affect the accuracy of the
dinatesz, andz, for the reconstruction of the singular com- depth-dose distributions calculated with the reconstructed
ponent can be selected a8~ R,o andz,~RyWhereR,pis  spectrum because of the singular nature of this part of the
the depth where percent depth-dose drops off to 40% anspectrum. This accuracy is less than 1% over the electron
Rmax IS the maximum range of the electrons. range. It should also be understood that the reconstruction of

Medical Physics, Vol. 29, No. 4, April 2002



588 A. V. Chvetsov and G. A. Sandison: Reconstruction of electron spectra 588
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Fic. 7. Comparison of the incident and reconstructed electron spectra for the Energy (MeV)

5 (a), 10(b), and 20(c) MeV electron beams from a Philips-Elekta SL75-20

accelerator. The incident electron spectra were obtained by Ding and RogeFsc. 8. Comparison of the incident and reconstructed electron spectra for the

using Monte Carlo treatment head simulatién. 6 (@, 9 (b), and 18(c) MeV electron beams from a Varian Clinac 2100C
accelerator. The incident electron spectra were obtained by Ding and Rogers
using Monte Carlo treatment head simulatidThe y axis is logarithmic.

the singular component has a theoretical computational limit
because of the small sensitivity of the depth-dose distributiomeconstructed with good accuracy for all energies. It seems
to the form of the singular component. that the algorithm reproduces even small statistical fluctua-
Figure 7 show the incident and reconstructed electrortions in the incident Monte Carlo spectra. The accuracy in
spectra which correspond to tfe 5, (b) 10, and(c) 20 MeV  the peak region is lower and typically overestimates the
electron beams from a Philips-Elekta SL75-20 accelerato=WHM. This overestimation decreases, however, with de-
They axis is logarithmic in this plot to show the accuracy of creasing incident beam energy. The overestimation is prima-
the reconstructed regular component. The low-energy part isly due to the computational limit of reconstruction of the
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theoretical limit of 10% previously reported by Feddegon
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] o Fic. 10. Comparison of depth-dose curves calculated using Monte Carlo and
Fic. 9. Comparison of the incident and reconstructed electron spectra for thesconstructed energy spectra for théah 10 (b), and 20(c) MeV electron
6 (a), 9 (b), and 18(c) MeV electron beams from a Varian Clinac 2100C peams from a Philips-Elekta SL75-20 accelerator. The spectra are shown in

because of the small sensitivity of the depth-dose curve to
singular component. Our algorithm was able to reproduce theariations in the value of the FWHM if the FWHM is less
FWHM up to 5% of the mean energy which is smaller thanthan 5%.
Figures 8 and 9 show the incident and reconstructed elec-
and Blevis? Probably, this improvement is due to the ana-tron spectra which correspond to tta 6, (b) 9, and(c) 18
lytical approximation of the singular component and the acMeV electron beams from a Varian Clinac 2100C accelera-
curate simulation of the depth-dose curve by the discretéor. We included additionally Fig. 9 with linegraxis to give
ordinates method. Further improvement is hardly possiblelearly the relative size of the numerical artifacts. The results
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a) 6 MeV applicator. This second peak is, however, not reconstructed
120
" for the 20 MeV electron beam.
onte Carlo spectrum . . . .
100 | *»  Reconstructed spectrum The depth-dose distributions calculated with the recon-
structed spectra for both Philips-Elekta SL75-20 and Varian
80 4 Clinac 2100C accelerators have a relative accuracy less than
° 1% over the electron range. A comparison of depth-dose dis-
g o] tributions calculated using Monte Carlo and reconstructed
= energy spectra for these accelerators is presented in Figs. 10
401 and 11.
27 V. CONCLUSIONS
0 We have developed an algorithm for the reconstruction of
Q 1 2 3 4

electron spectra of medical accelerators from central axis
depth-dose curves. Significant improvement of the robust-
b) 9 MeV ness and accuracy of reconstructed spectra was achieved us-
120 ing separation of the singular and regular components of the
Monte Carlo spectrum electron spectrum. The algorithm is based on an effective
100 1 ® Reconsiructed specium variational method with regularization technique and a
Gaussian analytical approximation for the singular peak of
the electron spectrum. The regular component of the spec-
trum is reconstructed in close agreement with direct Monte
Carlo simulations. Accuracy of the singular component is
40 worse primarily due to the theoretical limit of reconstruction.
This, however, does not affect the accuracy of the depth-dose
20 1 distributions. The reconstructed electron spectra do not have
nonphysical oscillations and reproduce the input depth-dose
0 , , T . : . distributions with relative accuracy less that 1%. In order to
Depth (cm) be applied for commissioning of a Monte Carlo treatment
planning system, the reconstruction algorithm must be
c) 18 MeV supplemented by a method for determining the angular dis-
120 tribution of incident electrons.
Monte Cario spectrum

100 4 * Reconstructed spectrum ACKNOWLEDGMENTS
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Depth (cm) APPENDIX A: GRADIENTS OF AN OBJECTIVE
FUNCTION BASED ON SPECTRAL WEIGHTS

Fic. 11. Comparison of depth-dose curves calculated using Monte Carlo and In th lculati fth dient of th biective f ti
reconstructed energy spectra for théa 9 (b), and 18(c) MeV electron n the calculation of the gradient of the objective functon

beams from a Varian Clinac 2100C accelerator. The spectra are shown @iven by Egs.(9) and (11), we will consider only the cases
Fig. 8. m=0 andm=1 which are of practical importance. We esti-
mate the spectrum and its derivative as

w
. . . (Ep)= =2, (A1)
are similar to those obtained for the Philips-Elekta SL75-20 AE
accelerator with very good accuracy in the low-energy part IF(E))  Wo—W, 4
of the spectra and overestimation of the FWHM of the peak. AP I (A2)

The resolution of the energy peaks improves with decreasing JE AE?

beam energy. Notice the reconstruction algorithm is capableshere AE=E,,, 1,—E,_4» IS the width of energy step.
of reproducing the second peak in the spectra for the 9 and Bhen, the zeroth- and first-order stabilizing functions are
MeV beams which is due to electron scattering from thegiven by
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1 N
Qo=-"= > W2, A3
0=3E 2, (A3)
N
Q1=Q0+ 1573 2 (Wn—Wn_1)%. (A4)
n=1

Substituting Eqs(A3) and (A4) into Eqg. (9) and differenti-
ating we obtain the gradients of the objective function for
m=0,

2
—ZJ (D(z) D(z))-d(z, En)dz+A

IW, E
n=1,...N, (A5)
and form=1,
(961 (960 2
IW AE3(2Wn_Wn71_Wn+1), n=1,...N.
n
(A6)

APPENDIX B: GRADIENTS OF AN OBJECTIVE
FUNCTION BASED ON A GAUSSIAN FUNCTION
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