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Reconstruction of electron spectra of medical accelerators from measured depth dose distributions
is an attractive tool for commissioning of a Monte Carlo treatment planning system. However, the
reconstruction method is an inverse radiation transport problem which is poorly conditioned, in the
sense it may become unstable due to small perturbations in the input data. Predicting the sharp
~delta-like! peak in the electron spectrum provides an additional challenge for the numerical recon-
struction technique. To improve efficiency and robustness of the reconstruction technique, we
developed an algorithm based on a separation of the electron spectrum into singular and regular
components. We approximate the singular peak of the spectrum by a narrow weighted Gaussian
function. The parameters of this Gaussian function are sought using only the fall-off and toe regions
of the depth-dose curve. Analytical representation of the spectral peak by a Gaussian has benefit
since only one weight and the mean and variance must be derived from the depth-dose curve
instead of multiple spectra weights. The regular part of the spectrum is reconstructed from the
residual depth-dose distribution using a variational method combined with a regularization tech-
nique to avoid the nonphysical oscillations. The effectiveness of the method is demonstrated by
comparing predictions to ‘‘benchmark’’ spectra and depth-dose distributions from Monte Carlo
simulation of medical accelerators. ©2002 American Association of Physicists in Medicine.
@DOI: 10.1118/1.1461840#
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I. INTRODUCTION

Energy spectra of medical accelerators significantly aff
the pattern of dose distributions in patients undergoing ra
therapy treatment. Currently, electron spectra are taken
account implicitly using the measured central axis dep
dose curve which is included into pencil beam algorithms
the near future, more advanced Monte Carlo treatment p
ning systems may appear in clinics which will simulate t
3D electron–photon transport more accurately using C
defined patient geometry. Simulation of 3D electron transp
using CT numbers requires the energy spectra and ang
distribution of electrons from medical accelerators on
patient surface in explicit form.

Energy spectra and angular distribution of electrons fr
medical accelerators may be measured directly or obta
from the Monte Carlo simulation of the accelerator treatm
head.1,2 However, these two direct ways of obtaining th
energy-angular distributions are not commonly implemen
into routine clinical praxis primarily because of the comple
ity of measurement and the knowledge base required for
ning Monte Carlo simulations. Therefore, many investigat
have tried inverse reconstruction to derive electron beam
rameters from the measured data such as the central
depth dose curves which are already included into the s
dard commissioning procedure for medical accelerators3–8

There are several advantages to using inverse reconstruc
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First, it does not require any supplementary equipment
detailed knowledge of the treatment head composition
geometry. Second, the equipment for measurement of
dose distributions is standard and already available in
clinic. Third, these methods are computationally fast.

Although a very attractive tool for clinical commissionin
of a Monte Carlo treatment planning system, reconstruct
of the phase-space distribution of an incident electron be
from depth-dose curves and lateral dose profiles is a diffi
numerical problem. The identification of the parameters o
radiation source with a limited number of external detect
is akin to inverse radiation transport problemswhich are
notorious for being poorly conditioned, in the sense th
may become unstable to small changes in the input d
Moreover, the computational finite arithmetic may impo
additional practical limitations to the calculation algorithm
Also, the specific from of electron spectra provides an ad
tional challenge for the numerical reconstruction techniq
because of the problems with sharp~delta-like! energy peaks
of direct electrons. Finally, inverse reconstruction of electr
beam parameters from depth-dose curves and lateral pro
is a multidimensional problem because their shape depe
on both the energy and angular distributions of the incid
electrons.

In this study, we consider only one part of this inver
problem, namely the reconstruction of an energy spectr
578…Õ578Õ14Õ$19.00 © 2002 Am. Assoc. Phys. Med.
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from the central axis depth dose curve. We also suppose
the energy deposition from the treatment head bremsst
lung is already subtracted from the total energy deposit
Under these conditions, the problem reduces to the inte
Fredholm equation of the first kind for the incident electr
spectrum and, in this sense, is similar to the previously c
sidered reconstruction of photon spectra.9,10 However, the
electron spectrum is distinguished by a high-intensity sin
lar component due to direct electrons and a low-inten
regular component due to electrons scattered with large
ergy loss. The difference between intensities in the sing
and regular components is several orders of magnitu
Therefore, the form of electron spectra and also the phy
of electron transport require special approaches in the re
struction technique.

It is a common procedure in the reconstruction of elect
spectra to introduce an energy grid and characterize the s
trum by its integrals over the energy bins. In this article,
refer to this method as a spectral weight technique. The s
tral weight technique with different methods for solving t
integral Fredholm equation of the first kind was used
Zhengming and Jette,3 Faddegon and Blevis,4 and Deng
et al.5 The spectral weight technique is universal becaus
is suitable for simulation of any complicated form of ener
spectra. However, it inevitably will have problems with th
steep gradients and sharp peaks in an energy spectrum.
the spectral weight technique may become unstable bec
of the ill-conditioning property of the integral Fredholm
equation of the first kind which governs the reconstruct
procedure. The importance of the regularization techniq
to correct for the ill-conditioning property was pointed o
by Zhengming and Jette.3

An alternative approach to the reconstruction of elect
spectra was used by Kawrakowet al.7 In this approach, pa-
rameters of the analytic trial functions are sought instead
the multiple spectral weights. The form of the trial functio
can be easily selected because the general form of elec
spectra of medical accelerators is well known. The anal
technique is stable if, of course, the number of trial functio
and their parameters are relatively small. The analytic te
nique is more effective for the spectral peak and less ef
tive for the low-energy part of the spectrum because the l
energy part has a complicated form defined by the elec
scattering from the treatment head and applicator. The l
energy part of electron spectrum cannot be described b
simple analytic function with a few parameters.

The main goal of this article is to improve the accura
and robustness of electron energy spectra reconstructed
measured depth dose distributions. To achieve this goal
develop a hybrid method which has the advantages inhe
to both the spectral weight and analytical techniques.8 The
main idea of the method is based on the fact that a la
component of the electron spectrum can be described
simple analytical function and separated from the numer
reconstruction. These electrons are mostly direct electr
which did not undergo scattering with large energy loss. T
delta-like distribution of direct electrons presents a ma
problem for the numerical reconstruction techniques. We
Medical Physics, Vol. 29, No. 4, April 2002
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proximate this delta-like distribution by a weighted Gaus
ian. The residual component of the spectrum that is smo
and regular is reconstructed numerically using the spec
weight approximation. The integral Fredholm equation of t
first kind is solved using a variational method combined w
different regularization techniques to correct for the i
conditioned property.

The developed technique is applied to ‘‘benchmar
problems with known depth dose distributions and ene
spectra for a Philips-Elekta SL75-20 and a Varian Clin
2100C medical accelerators. The energy spectra and de
dose distributions for these accelerators have been obta
by Ding and Rogers using EGS4/BEAM Monte Carlo tre
ment head simulation.11 The Monte Carlo ‘‘benchmark’’ data
have been selected for the validation of our reconstruc
technique because the electron energy distribution is av
able over all the energy range. Also, the depth-dose cu
due to the treatment head bremsstrahlung is explicitly av
able in these calculations.

The remainder of this article is organized as follows.
Sec. II, we describe the depth-dose models for reconstruc
of electron spectra, a variational method with regularizat
for solving the inverse problem for the depth-dose curve a
the preparation of monoenergetic response functions u
the discrete ordinates method. In Sec. III, we present an a
lytic singular component decomposition technique to i
prove the accuracy of reconstructed spectra. In Sec. IV,
discuss the reconstructed spectra for different medical ac
erators. Finally, we give conclusions in Sec. V.

II. SOLVING THE INVERSE PROBLEM FOR THE
ELECTRON DEPTH-DOSE CURVE

A. Equations for the electron depth-dose curve

Reconstruction of an electron spectrum from a measu
central axis depth-dose distribution of a broad beam is ba
on numerical solutions to the integral Fredholm equation
the first kind,

D~z!5E
0

Emax
f ~E!d~z,E! dE, ~1!

whereD(z) is the measured central-axis depth-dose distri
tion in a water phantom,f (E) is the electron spectrum o
incident electrons, andd(z,E) is the depth dose distribution
from the monoenergetic beam with energyE. In practical
measurements, the depth-dose distributionD(z) contains a
component of the order of a few percent that is due to
treatment head bremsstralung. Effective algorithms for
decomposition of energy deposition due to treatment h
bremsstrahlung already have been considered by Fadd
and Blevis4 and Denget al.5 In this article, we suppose tha
the depth-dose distribution due to treatment head bremss
lung is already subtracted from the total depth-dose distri
tion.

For the numerical approximation of Eq.~1!, we introduce
an energy grid@En21/2,En11/2#, n51,...,N, whereE1/250,
EN11/25Emax andEn50.5(En21/21En11/2), n51,...,N. We
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580 A. V. Chvetsov and G. A. Sandison: Reconstruction of electron spectra 580
suppose that the energy intervals are narrow enough
within each interval the following condition holds:d(z,E)
'd(z,En) whered(z,En) is the depth dose distribution from
a monoenergetic source with energyEn . Then integrating
Eq. ~1! over the energy grid we obtain a numerical appro
mation

D~z!5 (
n51

N

wnd~z,En!, ~2!

where the spectral weightswn , n51,...,N, are given by

wn5E
En21/2

En11/2
f ~E!dE, n51,...,N . ~3!

In the approximation given by Eqs.~2! and ~3!, reconstruc-
tion of the incident electron spectrum reduces to that of fi
ing a discrete number of spectral weightswn , n51,...,N.

The model for calculation of monoenergetic depth do
distributionsd(z,En) significantly affects the accuracy of th
reconstructed spectra. For instance, electrons incident on
patient surface are characterized not only by the energy s
trum but also by significant angular spread. It is usually s
posed that the form of the depth-dose distribution is mo
due to the energy spectrum and is not affected by the ang
spread.3–5 In this approximation, the monoenergetic dep
dose functiond(z,En) can be calculated in theRZ geometry
with the point source on the axisZ or in the parallel broad
beam geometry using an inverse square factor. Both mo
correspond to a monodirectional source at the phantom
face. Definitely, theRZ geometry is more accurate but th
parallel broad beam geometry is less expensive. Becaus
parallel broad beam geometry is less expensive a higher
cision for the depth-dose distributions can be achieved
the same computational time.

To verify accuracy for the parallel broad beam model a
to investigate the influence of the initial angular spread
the depth-dose distributions, we have compared depth-d
curves from complete EGS4/BEAM simulations and simu
tions in the parallel broad beam geometry using input EG
BEAM incident spectra. The coupled electron–photon tra
port in the parallel broad beam geometry with EGS4/BEA
spectra was simulated using the standard discrete ordin
package CEPXS/ONELD-1.0 that is discussed later in
article. An example of such a comparison for 6, 9, and
MeV beams from a Varian Clinac 2100C accelerator is p
sented in Fig. 1. The depth-dose distribution of treatm
head bremsstrahlung was subtracted from the central
depth-dose curves simulated using the EGS4/BEAM co
Also, these central axis depth-dose curves have been
rected for the inverse squared factor.

The agreement between EGS4/BEAM and CEPX
ONELD-1.0 simulations is almost perfect for the 9 and
MeV beams in the fall-off and toe regions of the depth-do
curve. This is the region where the difference is expecte
be significant due to the different treatment for the div
gence of the electron beam. Thus, we can conclude from
Medical Physics, Vol. 29, No. 4, April 2002
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comparison that the parallel broad beam geometry is acc
able in the simulation of the monoenergetic depth-dose fu
tions d(z,En).

The curves simulated in the parallel broad beam geom
follow closely those simulated with the EGS4/BEAM cod

FIG. 1. Comparison of the central axis depth-dose curves calculated u
the EGS4/BEAM code for 6~a!, 9 ~b!, and 18~c! MeV electron beams from
a Varian Clinac 2100C accelerator11 and the depth-dose distributions o
monodirectional broad beams with identical incident energy spectra.
central depth-dose curves from the EGS4/BEAM simulation are corre
for the treatment head bremsstrahlung and the divergence of electron b
The monodirectional broad beam simulation is performed using the disc
ordinates package CEPXS/ONELD-1.0 with the incident electron spect
taken from EGS4/BEAM treatment head simulation.
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so the form of the depth-dose curves is primarily due to
form of the incident energy spectra. However, there is d
crepancy of the order of few percent in the plateau reg
which increases as the surface is approached. This disc
ancy cannot be explained by the divergence of the be
since the inverse square factor approaches zero at the
face. Therefore, we conclude that the large angular sprea
electrons scattered with large energy loss has a notice
influence on the shape of the depth-dose distributions.
the 6 MeV beam, there is also a discrepancy in the fall-
region because at this low beam energy the angular spre
significant even for the direct electrons.

If the monodirectional depth-dose curves are used for
reconstruction of energy spectrum from the measured
EGS4/BEAM central axis depth dose curve, this will res
in an ‘‘effective’’ energy spectrum. In the ‘‘effective’’ energ
spectrum, the effect of initial angular spread is simulated
‘‘softening’’ of the spectrum, so the ‘‘effective’’ energy spec
trum will produce a desirable depth-dose distribution. Ho
ever, it is not clear how this artificial ‘‘softening’’ of the
spectrum will affect the lateral profile and the accuracy in
calculations. If 1% dose/1 mm position accuracy is a goal
the electron dose calculations, the initial angular spread m
be taken into account in the spectrum reconstruction pro
dure.

Instead of the energy spectrum alone, the incident elec
beam should be characterized by the angular-ene
dependent electron sourceQ(E,m) wherem5cosu andu is
the angle between the normal to the water surface and d
tion of the incident electron. The energy and angular dep
dence of this source simulates the scattering of electron b
in air and from the components of the treatment head
applicator. If the angular distribution of the electron source
assumed to be asymuthally symmetric, then the depth d
distribution from this source may be expressed as follow

D~z!5E
0

EmaxE
21

11

Q~m,E!d̄~z,m,E! dm dE, ~4!

where the energy-angular depth-dose functiond̄(z,m,E) rep-
resents the dose distributions from the monoenergetic
ementary sources with energyE0 and angle of incidencem0 ,

q~m,E!5d~E2E0!d~m2m0!. ~5!

Obviously, the complete reconstruction of the initial energ
angular distributionQ(E,m) using only a depth-dose curv
D(z) is not possible. The angular distribution must be de
mined from an analysis of the lateral dose profiles or a s
plified consideration of the treatment head. Then, it sho
be taken into account in the reconstruction of electron sp
tra. If the energy–angular distribution of incident electrons
each energy interval@En21/2,En11/2# is expressed in the
form

Qn~m,E!5 f n~E!xn~m!, n51,...,N, ~6!
Medical Physics, Vol. 29, No. 4, April 2002
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wheref n(E) is the energy spectrum andxn(m) is the angular
distribution, we obtain for the depth dose distribution
equation similar to Eq.~4! with the elementary depth-dos
distributions given by

d~z,En!5E
21

1

d̄~z,m,En!xn~m! dm. ~7!

The weighting of the depth-dose distributions with the ang
lar distributionsxn(m), n51,...,N, is important for the re-
construction of the low-energy part of the spectrum wh
electrons have considerable angular spread due to scatt
from the applicator. It is less important for the reconstructi
of the high-energy part of the spectrum where electrons h
a small angular spread due to scattering in air.

The reconstruction of an energy spectrum given by
weightswn , n51,...,N, and the angular distributionsxn(m),
n51,...,N, may be considered as two separate proble
First, we determine the angular distributionsxn(m), n
51,...,N, and find the weighted depth dose distributio
Then, second, solve Eq.~2! for the spectral weights. The
main goal of this article is to find an accurate and rob
algorithm for solving Eq.~2!. So, we will suppose that the
incident electrons do not have the angular spread, i.e.,
angular distribution isxn(m)5d(m21), n51,...,N. Also, to
verify our algorithm, we use the depth-dose curves which
calculated with the EGS4/BEAM spectra and for monodire
tional electron beams.

B. A variational method with regularization

Solving the integral Fredholm equation of the first kin
for the electron spectrumf (E) is possible using several nu
merical techniques. In application of these techniques
should be recognized that the integral Fredholm equation
the first kind is ill conditioned on the depth-dose distributi
D(z). This ill-conditioned property may produce large no
physical oscillations in the reconstructed spectrumf (E) due
to small errors in the depth-dose distributionD(z) and trun-
cation errors of the numerical techniques. The amplitude
oscillations may vary from one method to another and e
can be reduced by use of adaptive energy grids, as was
by Faddegon and Blevis.4 However, the results will be un
stable and unpredictable if the source of these oscillatio
which is in the equation itself, is not removed.

The ill-conditioned property of the integral Fredhol
equation of the first kind can be demonstrated by implem
tation of a high-frequency perturbation with a limited amp
tuded f (E)5exp(ivE), v.0, into the spectrumf (E). Sub-
stituting this perturbation into Eq.~1! and integrating by
parts we obtain for the corresponding perturbation in
depth dose distribution
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dD~z!5E
0

Emax
d~z,E!eivE dE

5
1

iv
eivEd~z,E!u0

Emax2
1

iv E
0

Emax]d~z,E!

]E
eivE dE

5OS 1

v D . ~8!

The perturbationdD(z)5O(1/v) can be very small for the
high frequenciesv.0. It follows from this analysis that very
small perturbations in the depth-dose distribution can p
duce large high-frequency perturbations in the spectrum
the errors of the depth dose distributions are negligible,
the problem is solved numerically, truncation errors are
evitable. Again, it can lead to large errors in the spectru
Figure 2 shows large periodic oscillations in the reco
structed electron spectrum generated by small errors in
depth-dose distribution and, probably, by numerical appro
mations. The incident electron spectrum used for this fig
corresponds to the 20 MeV electron beam from a Phili
Elekta SL75-20 accelerator.11

To correct for the ill-conditioned property of the integr
Fredholm equation of the first kind, special regularizati
techniques have been developed. The main idea of th
methods is to find a stable operator with a solution that
proximates the solution to the integral Fredholm equation
the first kind. In this article, we apply a variational meth
for solving Eq.~2! where a least squares objective function
minimized using simple constraints on the spectrum. A s
tial Tichonov’s regularization function is included into th
objective function to achieve stability of the reconstruct
spectrum.12 The final equation for the objective function
given by

Um@ f ~E!#5E
0

zmax
„D̄~z!2D~z!…2 dz1aVm@ f ~E!#, ~9!

FIG. 2. Comparison between the incident electron spectrum and the s
trum reconstructed from the depth-dose distribution in water using the s
tral weight technique without regularization. The incident electron spect
is for to the 20 MeV electron beam from an Philips-Elekta- SL75-
accelerator.11
Medical Physics, Vol. 29, No. 4, April 2002
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where D̄(z) is the measured depth dose distributio
Vm@ f (E)# is the regularization function, anda is the regu-
larization parameter. The non-negative sourcef (E) that will
minimize the objective functionUm@ f (E)# will give a solu-
tion to the inverse problem of the depth-dose curve. We w
this problem as

minUm@ f ~E!#, subject to f ~E!>0. ~10!

The regularization functionVm@ f (E)# in Eq. ~9! is given
by

Vm@ f ~E!#5E
0

Emax
dE(

k50

m

pk~E!S dkf ~E!

dEk D 2

, ~11!

where pk(E) is a positive continuous weighting functio
which is usuallypk(E)[1. The stabilizing function withm
50 corresponds to theweak regularization that provides
only mean squared convergencef a(E)→ f (E). The stabiliz-
ing function withm>1 corresponds to thestrongregulariza-
tion that provides uniform convergence of the energy sp
trum f a(E)→ f (E) together with its derivatives of the
maximum order (m21). In practical calculations, they us
values not higher thanm51 because the valuesm.1 lead to
excessive smoothing of the reconstructed function. The re
larization parametera in Eq. ~9! is commonly selected by
visual control. The smallest value ofa is selected which
mitigates the nonphysical oscillations in the reconstruc
spectrum.

The minimum of the objective function given by Eq.~9!
is found using the L-BFGS-B code which has been dev
oped at the Optimization Technology Center, a joint vent
of Argonne National Laboratory and Northwestern Unive
sity. The code is based on the L-BFGS-B algorithm which
a limited-memory version of the quasi-Newton method w
simple constraints on the variables.13 The method is very
convenient for practical use because it requires only an
jective function and its derivatives as input to perform t
minimization search. The gradients for the objective funct
given by Eqs.~9! and ~11! are presented in Appendix A.

Examples of the iterative numerical reconstruction
electron spectra are shown in Figs. 3~a! and 3~b!. The itera-
tive processes have identical initial particle distribution. W
see that the reconstruction without regularization@Fig. 3~a!#
is unstable and the reconstruction with regularization@Fig.
3~b!# is stable. The benchmarch problem is for the 20 M
electron beam from a Philips-Elekta SL75-20 accelerator

C. Generation of the response function d „z,E… using
the discrete ordinates method

One of the key elements in the numerical solution of E
~1! is an adequate approximation of the response func
d(z,E) by a set of monoenergetic depth-dose curv
d(z,En), n51,...,N. First, the energy intervals
@En21/2,En11/2#, n51,...,N, must be narrow enough to ac
curately approximate the reconstructed spectrum and
equationd(z,E)'d(z,En) must be valid within each energ
interval. Second, the precision of the depth-dose cur

c-
c-
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583 A. V. Chvetsov and G. A. Sandison: Reconstruction of electron spectra 583
d(z,En), n51,...,N, must provide accurate calculation of th
gradients for the objective function and uniform convergen
of the iterative search process. Our experience shows th
uniform discretization with energy steps of 0.125 MeV fro
0 to 25 MeV~i.e., 200 monoenergetic depth-dose curves! is
adequate for accurate reconstruction of the electron spe
from medical linear accelerators. Further refinement of
energy grid does not improve the reconstructed energy s
tra.

However, if the angular distributionxn(m), n51,...,N, of
incident electrons must be taken into account, the angu
energy-dependent response functiond̄(z,m,E) must be cal-
culated. The angular-energy-dependent response func
d̄(z,m,E) must be folded with angular distributionsxn(m),
n51,...,N @see Eq.~7!#, to produce depth-dose distribution
of improved accuracy. In this case, calculation overhead
significantly increase. For instance, using 20 angular po
from 0° to 90° to approximate the large-angle scattering

FIG. 3. Examples of the iterative numerical reconstruction of the elec
spectrum without regularization~a! and using regularization~b!.
Medical Physics, Vol. 29, No. 4, April 2002
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electrons, the total number of depth-dose curves in the a
rithm should be 20320054000. Therefore, the calculatio

of the dose functionsd(z,E) and d̄(z,m,E) is a specific
transport problem where a great number of depth-dose
tributions must be calculated in a very simple geometry a
with very high precision.

The monoenergetic depth-dose curves can be calcul
using the condensed-history Monte Carlo method which
considered a standard numerical technique for the cou
electron-photon transport. Deterministic~i.e., nonstochastic!
methods for the coupled electron-photon transport are
available.14 Despite the promising theoretical considerati
of Borgers,15 deterministic methods are still less effective
complicated geometries than Monte Carlo methods. Ho
ever, they may be more efficient than the Monte Ca
method for some specific problems in simple geometries.
instance, the response functiond(z,E) can be simulated very
fast with high accuracy using the discrete ordinates meth

The discrete ordinates method is a deterministic met
for explicitly solving the Boltzmann transport equatio
Standard discrete ordinates codes find numerical solution
the transport equation using anSn approximation in angle~n
angular segments!, a multigroup approximation in energy
and some form of spatial differencing. The discrete ordina
solution converges to the analytical solution as more grou
spatial meshes, and discrete angles are employed. One o
advantages of the discrete ordinates method is the accu
with which the particle distributions are generated. This
curacy is usually defined by the convergence parameter
the iterations on the scattering source and is of the orde
0.01% in all calculational regions. In the Monte Carlo calc
lations, a precision of 1% at the maximum of the electr
depth-dose curve is considered acceptable. The precision
be worse in the fall-off and the toe regions of the depth-d
curve which are characterized by deep penetration of p
ticles. Another advantage of the discrete ordinates metho
the speed of calculations. In the predictions of the depth-d
distributions, the discrete ordinates method can be 50 tim
faster than the Monte Carlo method.16–18The extremely high
accuracy and calculational speed of the discrete ordin
method motivated us to use this method for the generatio
the response functiond(z,E).

The coupled electron–photon transport calculations
this article were performed using the package CEPX
ONELD-1.0 which is based on the multigroup discrete or
nates method.16–18 The package CEPXS/ONELD-1.0 wa
developed for simulation of the coupled electron–pho
transport in one-dimensional geometries. It consists of
code CEPXS for the preparation of the coupled multigro
electron–photon crosssections and the general purpose
dimensional Boltzmann transport solver ONEDANT whic
was previously developed for solving the neutron–pho
transport problems. The CEPXS/ONELD-1.0 discrete or
nates package solves the time-independent coupled elect
photon–positron problems in plane, spherical, and cylind
cal geometries. For the neutral particle~photon! transport the
Boltzmann equation is solved

n
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V•“Cg1S t
gCg5E

0

`

dE8E
4p

dV8Sgg~r ,E8→E,

V8•V!Cg~r ,E8,V8!

1E
0

`

dE8E
4p

dV8Seg~r ,E8→E,

V8•V!Ce~r ,E8,V8!, ~12!

and for the charged particle~electron and positron! transport
the Boltzmann-CSD~continuous slowing down! equation is
solved

V•“Ce1S t
eCe52

]

]E
@Se~r ,E!Ce#

1E
0

`

dE8E
4p

dV8See~r ,E8→E,

V8•V!Ce~r ,E8,V8!

1E
0

`

dE8E
4p

dV8Sge~r ,E8→E,

V8•V!Cg~r ,E8,V8!. ~13!

In Eqs. ~12! and ~13!, Ce[Ce(r ,V,E) and Cg

[Cg(r ,V,E) are the spatial-angular-energy distributions
electrons and photons,S t

e[S t
e(r ,E) and S t

g[S t
g(r ,E) are

the total cross sections for electrons and photons,See(r ,E8
→E,V8V) and Sgg(r ,E8→E,V8V) are the electron-to-
electron and photon-to-photon differential in energy a
angle cross sections,Sge(r ,E8→E,V8V) and Sge(r ,E8
→E,V8V) are the electron-to-photon and photon-t
electron differential in energy and angle cross-sections,
Se(r ,E) is the restricted stopping power which is the zero
moment of the collisional and radiative cross sections w
small energy transfers.

In the ONEDANT code, the Boltzmann transport equati
~12! is solved by discretization of energy, space, and ang
variables. The multigroup approximation for the energy d
pendence,Sn discrete ordinates approximation for the ang
lar flux, and the LegendrePL expansion for the angular de
pendence of cross sections are standard options in
discrete ordinates transport codes which have been use
many years in neutral particle transport. A revision of t
ONEDANT code called ONEDANT-LD is recommended fo
solving the coupled electron–photon transport proble
This version is based on the third-order accuracy linear
continuous~LD! spatial discretization. The LD spatial dis
cretization provides numerical solutions of better quality,
pecially in the deep penetration problems, if compared to
standard second-order diamond difference~DD! spatial dis-
cretization. The final system of simple linear equations
solved iteratively with use of the S2 synthetic accelerat
technique. The accuracy of solutions is defined primarily
the convergence of the iterative process and is of the orde
0.01%.

Having a better approximation order and improved mo
tonicity and positivity properties compared to the stand
Medical Physics, Vol. 29, No. 4, April 2002
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DD scheme, the LD scheme can become negative in com
tational cells with very steep gradients of solution. Usua
this problem is solved using nonlinear correction algorithm
The adaptive LD scheme is one of the ways to obtain
positive numerical solution without deterioration of sour
convergence inherent to other nonlinear algorithms.19,20 De-
spite the fact that the nonlinear correction techniques for
LD scheme are theoretically available, the implementation
them into discrete ordinates codes is not easy becaus
problems with consistency in acceleration methods. None
the nonlinear corrections is available in the ONELD cod
Therefore, the only way to avoid the negative solutions is
further refine the spatial grid.

The Boltzmann-CSD equation~13! was derived for solv-
ing the charged particle transport problems because
‘‘soft’’ collisions with atomic electrons cannot be handled
the PL and multigroup approximations. Also, differentia
cross sections are not adequate in this ‘‘soft’’ region, so o
the moments of the cross sections can be estimated. A sp
technique was developed to solve the Boltzmann-CSD eq
tion ~13! using the standard discrete ordinates Boltzma
solvers as ONEDANT-LD.21 The electron–photon cross se
tions in the multigroup andPL Legendre approximations fo
solving the Boltzmann and the Boltzmann-CSD equations
the ONEDANT-LD code are generated by the CEPXS co
using the same physical interactions which are usually ta
into account in Monte Carlo calculations.

Lorenceet al. demonstrated the accuracy and compu
tional speed of the CEPXS/ONELD-1.0 package by co
parison to the Monte Carlo predictions and experimen
data.18 The Monte Carlo predictions were obtained usi
one-dimensional codes of the Integrated-TIGER-Se
~ITS!. However, we find it useful to additionally compar
CEPXS/ONELD-1.0 and Monte Carlo predictions in th
problems which are specific to medical physics applicatio
These problems usually include water phantoms with bo
like heterogeneities and the energy of incident elect
beams up to 20 MeV. Such a comparison for a water ph
tom and a water phantom with a slab SB3 bone-like hete
geneity is presented in Fig. 4. The normally incident bro
electron beams are monodirectional and monoenergetic
energies 10@Fig. 4~a!# and 20@Fig. 4~b!# MeV. The bench-
mark problems and EGS4 calculations are from Neu
schwanderet al.22 The agreement between the Monte Ca
and discrete ordinates predictions is excellent, especi
when it is taken into account that the numerical approac
for the nuclear crosssections and particle transport are q
different.

III. DECOMPOSITION OF THE SINGULAR
COMPONENT

A. Complete decomposition

Electron energy spectrum from a medical accelerator m
be separated into singular and regular components. The h
intensity singular component with delta-like energy distrib
tion is due to direct electrons. The low-intensity regular co
ponent is due to electrons which are scattered with la
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585 A. V. Chvetsov and G. A. Sandison: Reconstruction of electron spectra 585
energy loss from the treatment head components and a
cator. The singular component contains most of the electr
so the difference of intensities in the regular and singu
components is of several orders of magnitude. However,
regular component plays a significant role in the dose dis
butions because the integral number of electrons in this c
ponent is also significant.

Because of the specific form of the electron spectra
reconstruction technique based on the optimization of sp
tral weights with regularization is not always effective. The
are several reasons for this:~1! The technique of spectra
weights seems to be inefficient in describing the steep gr
ents associated with the spectrum’s very sharp energy p
Further refinement of the energy grid does not improve
accuracy because of the unavoidable errors in meas
depth dose distributions and computed monoenergetic
sponse functions.~2! It is well known that the regularization
technique has a drawback of smoothing sharp peaks
reconstructed function. Therefore, the spectral weight te
nique with regularization is not capable of reproducing
energy peak in the electron spectrum.~3! the spectral peak

FIG. 4. Comparison between the depth-dose distributions in homogen
and heterogeneous phantoms calculated using the EGS4 Monte Carlo
and the CEPXS/ONELD-1.0 discrete ordinates package for 10 MeV~a! and
20 MeV ~b! monoenergetic and monodirectional broad electron beams.
EGS4 Monte Carlo simulations are taken from Neuenschwanderet al.22
Medical Physics, Vol. 29, No. 4, April 2002
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contains most of the electrons forcing the regular compon
to be affected by the numerical ‘‘noise’’ of the reconstructi
technique.~4! The contribution of the fall-off region of the
depth-dose curve to the least squares objective functio
smaller than that of the plateau region. The contribution
the toe region of the depth-dose curve, critical for accur
reconstruction of the singular component, is much sma
This means, that the gradient search is more accurate in
plateau region of the depth-dose curve for the objective fu
tion given by Eq.~9!. Theoretically, the problem could b
overcome by implementation of an importance weighti
factor I (z)51/@D̄(z)#2 into the objective function which
would make all regions of the depth dose curve equally
portant in the objective function. We found, however, th
this approach does not significantly improve the accuracy
reconstructed spectra.

It was concluded that the spectral weight technique mi
be very effective for the reconstruction of the regular co
ponent when the singular component is not present. T
motivated us to use a hybrid reconstruction technique wh
the singular and regular components are processed using
ferent approaches. We consider the electron energy spec
as a sum of the singularf reg(E) and the regularf reg(E) com-
ponents:

f ~E!5 f sing~E!1 f reg~E!. ~14!

Correspondingly, for the depth dose distributionD(z) we
have

D~z!5Dsing~z!1D reg~z!, ~15!

whereDsing(z) is the depth-dose from the singular comp
nent f sing(E) of the spectrum andD reg(z) is the depth-dose
from the regular componentf reg(E) of the spectrum.

Instead of the spectral weight technique, the singu
component of the spectrum is reconstructed using a sin
analytical function. In this article, we approximate the sing
lar component of the spectrum by a narrow weighted Gau
ian function,

f sing~E!5l
1

A2ps
e2~E2E0!2/2s2

, ~16!

whereE0 ands are the mean energy and the variance anl
is a weighting factor. If the spectrum is normalized to o
particle, the weightl shows the relative number of particle
in the singular component and the weight (12l) shows the
relative number of particles in the regular component. F
the weighted Gaussian, only one weight and the mean
variance must be derived from the depth dose distribut
instead of multiple spectral weights.

Parameters of the analytic approximation for the singu
component are found using only the fall-off and toe regio
of the depth-dose distribution. The parametersE0 , s, andl
in Eq. ~16! are found from the condition that the singul
depth-dose componentDsing(z) approximates the fall-off and
toe regions of the total depth doseD̄(z) as it is shown in Fig.
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586 A. V. Chvetsov and G. A. Sandison: Reconstruction of electron spectra 586
5~a!. The computational algorithm for solving this problem
based on the minimization of the following least squar
objective function

F@ f sing~E!#5E
z1

z2
„D̄~z!2Dsing~z!…2 dz, ~17!

where the coordinatesz1 and z2 determine the region with
dose deposition due to the singular component. The min
zation problem

minF@ f sing~E!#, subject to f sing~E!>0, ~18!

is solved using the same L-BFGS-B optimization routi
which is used for the spectral weight technique. Howev
the optimization with an analytical Gaussian function do
not require a regularization technique and is based on o
three variablesE0 , s, and l. The gradients for the
L-BFGS-B algorithm which correspond to the objecti
function given by Eq. ~17! and the analytical function
f sing(E) given by Eq.~16! are presented in Appendix B.

The regular part of the spectrumf reg(E) is reconstructed
using the spectral weight representation from the resid
depth-dose distribution. The regular dose componentD reg(z)

FIG. 5. Complete~a! and partial~b! decomposition of the singular dos
component from the total depth-dose distribution. The total depth-dose
tribution is for the 10 MeV electron beam from an Philips-Elekta- SL75-
accelerator.11
Medical Physics, Vol. 29, No. 4, April 2002
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is found as a difference between the total depth-doseD(z)
and the singular depth-dose componentDsing(z). Applying
the numerical reconstruction technique to the regular de
dose componentD reg(z) we find the regular component o
the spectraf reg(E).

B. Partial decomposition

It should be noted that the complete separation of
singular component as it is shown in Fig. 5~a! is character-
ized by a separation depthzsep which corresponds to the
maximum range for electrons from the regular compone
Because the separation depthzsep is less than the maximum
depth of penetrationzmax, there is also a separation energ
Esep,Emax in the reconstructed spectrum that separates
regular and singular components. It is difficult to obtain
smooth junction between the regular and singular com
nents in the pointEsep using complete separation of the si
gular component because any numerical algorithm will ha
problems with steep boundary conditions. Despite the n
physical perturbations, the junction region does not have
nificant influence on the accuracy of the depth dose distri
tions. However, we try to avoid them using a part
separation of the singular component.

In the partial separation, a part of the singular compon
is transferred to the regular component and reconstructed
merically using the spectral weight technique. After det
mining the parametersl, s, andE0 of the weighted Gaussian
function given by Eq.~16! from the complete separation, w
chose a new weighting parameterl̄5tl(0<t,1) and cal-
culate new depth-dose distributionsDsing(z) and D reg(z).
Obviously, the valuet50 corresponds only to the numeric
reconstruction technique that uses the spectral weights.
value t50.8 was used in the calculations presented in t
article. An example of partial separation is shown in F
5~b!. We see that the electrons from the regular and sing
components penetrate till maximum depthzmax, so there is
no separation depthzsep. Consequently, electrons in th
regular and singular components have the same maxim
energyEmax and we avoid the problem in the junction regio
The energy spectra reconstructed from the depth–dose
tributions in Fig. 5 are analyzed in Sec. IV.

IV. RESULTS

A. Computational parameters and grids

The reconstruction technique developed was applied
‘‘benchmark’’ depth dose distributions which were calculat
using the CEPXS/ONELD-1.0 code in parallel broad be
geometry. The incident electron spectra have been ta
from EGS4/BEAM treatment head simulation for Philip
Elekta SL75-20 and Varian Clinac 2100C accelerators.
shown in Fig. 1, the difference between depth-dose distri
tions calculated using CEPXS/ONELD-1.0 in parallel bro
beam geometry and complete EGS4/BEAM simulations
very small and is primarily due to the initial angular spre
of the incident electrons. In this article, we do not consid
the angular spread of incident electrons and use monod
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587 A. V. Chvetsov and G. A. Sandison: Reconstruction of electron spectra 587
tional depth-dose functionsd(z,En). Therefore, to make the
numerical experiment on the reconstruction of electron sp
tra absolutely ‘‘pure’’ we use depth-dose distributions calc
lated in the same geometry as the functionsd(z,En). Apply-
ing the reconstruction algorithm with the monodirection
functions d(z,En) to the EGS4/BEAM depth-dose curve
produces ‘‘effective’’ energy spectra which account for t
initial angular spread of the incident electrons.

The monoenergetic response functionsd(z,En), n
51,...,N, have been calculated using the CEPXS/ONEL
1.0 discrete ordinates package over the energy inte
0.5–27 MeV with energy step 0.125 MeV, so the total nu
ber of depth-dose curves wasN5213. Further refinement did
not improve the accuracy of the reconstructed spectra.
accuracy of the calculated monoenergetic depth-dose cu
was 0.01%, which corresponds to the convergence crite
of the discrete ordinates method. The depth-dose distr
tions were calculated in the space region from 0 to 15 cm
all energies, so the bremsstrahlung ‘‘tail’’ was accurat
simulated up to a depth of 15 cm.

The coupled electron–photon transport was simulated
ing 50 equidistant energy groups for electrons and 30 e
distant energy groups for photons. The cutoff energy
electrons was 0.1 MeV. AnS32 Gauss quadrature with 3
angular intervals was used for approximation of the angu
flux and aP31 Legendre expansion was used for the angu
dependence of the electron and photon cross-sections.
spatial dependence of the particle flux was calculated u
60 spatial meshes from the surface to the maximum rang
electrons and 20–30 spatial meshes for the breamsstrah
‘‘tail.’’ The calculational time on a PENTIUM III 500 MHz
computer was around 60 s for this discretization. Furt
refinement of the calculational grids did not improve the
curacy of depth-dose distributions.

The minimum of the objective functions based on t
spectral weights and the weighted Gaussian function
found using the L-BFGS-B algorithm, which is a version
the deterministic quasi-Newton algorithm with simple co
straints on the variables. For the objective functions a
number of variables considered in this article, the typi
calculational time is a few seconds on a PENTIUM III 50
MHz computer. To find an optimal solution, the algorith
uses as input the depth-dose curve and, additionally,
regularization parametera for the objective function given
by Eq.~9! and the depth coordinatesz1 andz2 for the objec-
tive function given by Eq.~17!. We found that the paramete
a50.125 is suitable for regularization of any electron sp
tra if the energy binsDE50.125 MeV are used for approxi
mation of the integral Fredholm equation of the first kind

We also have to mention that weak regularization with
simplest weighting functionp(E)[1 was effective enough
so we did not use the strong regularization. The depth c
dinatesz1 andz2 for the reconstruction of the singular com
ponent can be selected asz1'R40 andz2'Rmax whereR40 is
the depth where percent depth-dose drops off to 40%
Rmax is the maximum range of the electrons.
Medical Physics, Vol. 29, No. 4, April 2002
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B. Analysis of the reconstructed spectra

Figure 6 shows the singular and regular components
electron spectrum@Fig. 6~a!# and the total electron spectrum
@Fig. 6~b!# which have been reconstructed from the dep
dose distribution presented in Fig. 5. The incident elect
spectrum corresponds to the 10 MeV electron beam o
Philips-Elekta SL75-20 accelerator. They axis is linear in
this plot to show the real ratio of the regular and singu
components. The regular component of the reconstruc
spectrum does not have noticeable nonphysical oscillat
and approximates the low-energy part of the incident sp
trum with good accuracy. The reconstructed singular com
nent is slightly shifted to the low energies and the FWH
~full width at half maximum! is slightly overestimated. How-
ever, these discrepancies do not affect the accuracy of
depth-dose distributions calculated with the reconstruc
spectrum because of the singular nature of this part of
spectrum. This accuracy is less than 1% over the elec
range. It should also be understood that the reconstructio

FIG. 6. The regular and singular components of the electron spectrum fo
10 MeV electron beam from a Philips-Elekta SL75-20 accelerator:~a! sepa-
rated singular and regular components;~b! sum of the regular and singula
components. The decomposition into regular and singular components
responds to the decomposition of the depth-dose distribution presente
Fig. 5~b!.
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588 A. V. Chvetsov and G. A. Sandison: Reconstruction of electron spectra 588
the singular component has a theoretical computational l
because of the small sensitivity of the depth-dose distribu
to the form of the singular component.

Figure 7 show the incident and reconstructed elect
spectra which correspond to the~a! 5, ~b! 10, and~c! 20 MeV
electron beams from a Philips-Elekta SL75-20 accelera
They axis is logarithmic in this plot to show the accuracy
the reconstructed regular component. The low-energy pa

FIG. 7. Comparison of the incident and reconstructed electron spectra fo
5 ~a!, 10 ~b!, and 20~c! MeV electron beams from a Philips-Elekta SL75-2
accelerator. The incident electron spectra were obtained by Ding and Ro
using Monte Carlo treatment head simulation.11
Medical Physics, Vol. 29, No. 4, April 2002
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reconstructed with good accuracy for all energies. It see
that the algorithm reproduces even small statistical fluct
tions in the incident Monte Carlo spectra. The accuracy
the peak region is lower and typically overestimates
FWHM. This overestimation decreases, however, with
creasing incident beam energy. The overestimation is pri
rily due to the computational limit of reconstruction of th

he

ersFIG. 8. Comparison of the incident and reconstructed electron spectra fo
6 ~a!, 9 ~b!, and 18~c! MeV electron beams from a Varian Clinac 2100
accelerator. The incident electron spectra were obtained by Ding and Ro
using Monte Carlo treatment head simulation.11 The y axis is logarithmic.
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589 A. V. Chvetsov and G. A. Sandison: Reconstruction of electron spectra 589
singular component. Our algorithm was able to reproduce
FWHM up to 5% of the mean energy which is smaller th
theoretical limit of 10% previously reported by Feddeg
and Blevis.4 Probably, this improvement is due to the an
lytical approximation of the singular component and the
curate simulation of the depth-dose curve by the disc
ordinates method. Further improvement is hardly poss

FIG. 9. Comparison of the incident and reconstructed electron spectra fo
6 ~a!, 9 ~b!, and 18~c! MeV electron beams from a Varian Clinac 2100
accelerator. The incident electron spectra were obtained by Ding and Ro
using Monte Carlo treatment head simulation.11 The y axis is linear.
Medical Physics, Vol. 29, No. 4, April 2002
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because of the small sensitivity of the depth-dose curve
variations in the value of the FWHM if the FWHM is les
than 5%.

Figures 8 and 9 show the incident and reconstructed e
tron spectra which correspond to the~a! 6, ~b! 9, and~c! 18
MeV electron beams from a Varian Clinac 2100C accele
tor. We included additionally Fig. 9 with lineary axis to give
clearly the relative size of the numerical artifacts. The resu
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FIG. 10. Comparison of depth-dose curves calculated using Monte Carlo
reconstructed energy spectra for the 5~a!, 10 ~b!, and 20~c! MeV electron
beams from a Philips-Elekta SL75-20 accelerator. The spectra are show
Fig. 7.



-2
a
ak
sin
b

nd
th

ted

on-
ian
than
dis-
ted
s. 10

of
xis
st-

d us-
the

tive
a
of
ec-

nte
is

n.
ose
ave
ose
to
nt
be

dis-

g
te

ey
so
li-
on-
der

n
s
ti-

.
re

a

n

590 A. V. Chvetsov and G. A. Sandison: Reconstruction of electron spectra 590
are similar to those obtained for the Philips-Elekta SL75
accelerator with very good accuracy in the low-energy p
of the spectra and overestimation of the FWHM of the pe
The resolution of the energy peaks improves with decrea
beam energy. Notice the reconstruction algorithm is capa
of reproducing the second peak in the spectra for the 9 a
MeV beams which is due to electron scattering from

FIG. 11. Comparison of depth-dose curves calculated using Monte Carlo
reconstructed energy spectra for the 6~a!, 9 ~b!, and 18~c! MeV electron
beams from a Varian Clinac 2100C accelerator. The spectra are show
Fig. 8.
Medical Physics, Vol. 29, No. 4, April 2002
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applicator. This second peak is, however, not reconstruc
for the 20 MeV electron beam.

The depth-dose distributions calculated with the rec
structed spectra for both Philips-Elekta SL75-20 and Var
Clinac 2100C accelerators have a relative accuracy less
1% over the electron range. A comparison of depth-dose
tributions calculated using Monte Carlo and reconstruc
energy spectra for these accelerators is presented in Fig
and 11.

V. CONCLUSIONS

We have developed an algorithm for the reconstruction
electron spectra of medical accelerators from central a
depth-dose curves. Significant improvement of the robu
ness and accuracy of reconstructed spectra was achieve
ing separation of the singular and regular components of
electron spectrum. The algorithm is based on an effec
variational method with regularization technique and
Gaussian analytical approximation for the singular peak
the electron spectrum. The regular component of the sp
trum is reconstructed in close agreement with direct Mo
Carlo simulations. Accuracy of the singular component
worse primarily due to the theoretical limit of reconstructio
This, however, does not affect the accuracy of the depth-d
distributions. The reconstructed electron spectra do not h
nonphysical oscillations and reproduce the input depth-d
distributions with relative accuracy less that 1%. In order
be applied for commissioning of a Monte Carlo treatme
planning system, the reconstruction algorithm must
supplemented by a method for determining the angular
tribution of incident electrons.
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APPENDIX A: GRADIENTS OF AN OBJECTIVE
FUNCTION BASED ON SPECTRAL WEIGHTS

In the calculation of the gradient of the objective functio
given by Eqs.~9! and ~11!, we will consider only the case
m50 andm51 which are of practical importance. We es
mate the spectrum and its derivative as

f ~En!5
wn

DE
, ~A1!

] f ~En!

]E
5

wn2wn21

DE2 , ~A2!

where DE5En11/22En21/2 is the width of energy step
Then, the zeroth- and first-order stabilizing functions a
given by

nd
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Substituting Eqs.~A3! and ~A4! into Eq. ~9! and differenti-
ating we obtain the gradients of the objective function
m50,
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APPENDIX B: GRADIENTS OF AN OBJECTIVE
FUNCTION BASED ON A GAUSSIAN FUNCTION

To calculate the gradient of the least squared objec
function F@ f sing(E)# given by Eq.~17! and the analytical
singular functionf sing(E) given by Eq.~16!, we present the
depth-dose distributionDsing(z) from the analytic function
f sing(E) through the monoenergetic response funct
d(z,E):

Dsing~z!5E
0

Emax
d~z,E! f sing~E! dE. ~B1!

Then, differentiating the objective functionF@ f sing(E)# on
the parameter we obtain
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„D̄~z!2Dsing~z!…
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where
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