CODA

CEBAF On-line Data
Acquisition

User’s Manual

Continuous Electron Beam Accelerator Facility

Newport News, Virginia, USA

(This page is intended as a binder edge insert. Cut the right 1” from this page and insert
into the binder pocket).

>0 00

CODA

CEBAF On-line Data
Acquisition

User’s Manual

Version 1.4

January 24, 1995

co-da \ 'kod-o\ n [It. lit., tail, fr. L cauda] : a concluding musical
section that is formally distinct from the main structure

Document Date: January 24, 1995

UNIX is a registered trademark of AT&T in the USA and other countries.
VxWorks is a registered trademark of Wind River Systems.

DataViews, DV-Tools and DV-Draw are registered trademarks of V.I. Corporation.
The X Window System is a trademark of Massachusetts Institute of Technology.
OSF/Motif and Motif are trademarks of Open Software Foundation, Inc.

Ultrix and DEC are registered trademarks of Digital Equipment Corporation.

HPUX is a registered trademark of Hewlett Packard.

The Southeastern Universities Research Association (SURA) operates the Continuous
Electron Beam Accelerator Facility (CEBAF) for the United States Department of
Energy under contract DE-AC05-84ER40150.

DISCLAIMER

This report was prepared as an account of work sponsored by the United States government. Neither the
United States nor the United States Department of Energy, nor any of their employees, makes any war-
ranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness,
or usefulness of any information, apparatus, product, or process disclosed, or represents that its use
would not infringe privately owned rights. Reference herein to any specific commercial product, pro-
cess, or service by trade name, mark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or any agency
thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of
the United States government or any agency thereof.

Release Notes for 1.4

1 General

CODA 1.4 contains significant performance enhancements and new features relative to
the 1.2 release, as well as a number of changes designed to allow the experienced user
the ability to more easily customize service communication and data flow. For a com-
plete list of changes, see “New Features” below.

CODA 1.4 no longer supports the use of DataViews for the SlowControls display or
graphics display in RunControl. Hence, CODA 1.4 may be used without either a Data-
Views development or run-time license.

A VxWorks target license is required (and can be purchased directly from CEBAF) for
each single board computer (FASTBUS, VME or CAMAC) used as a readout control-
ler; a development license is not required.

2 New Features since Version 1.2

¢ Support for HP-UX operating system (as of 1.3b).

* RunControl enhancements including: remote status display, graphical display
history of event/data rates, switchable options for event logging, automatic halt of
run after user specified event/data limit, automatic restart of a run after an end or
service crash, and execution of multiple user written shell scripts during any of the
transition events of RunControl (i.e. prestart, go, end, etc...).

¢ Improved network dataflow from ROC to EB using TCP streams over both ethernet
as well as FDDI.

¢ Alternate data path for the FSCC readout via parallel link into VME memory.

¢ Support for the CEBAF trigger supervisor including both software and hardware
modules.

¢ Support of “asynchronous” ROCs sending events to the event builder.

* ROC and Event builder support for syncronization events (issued by trigger
supervisor).

* ROC event size limits have been increased. By default a single event can be
16KBytes (4096 FB data words). The user can adjust the ROC buffer’s high water
mark to allow events as large as 32Kbytes.

* Support for multiple data spies on a single event stream.

* CAMAC readout supported (Library and ROC) for the CES VCC2117 Intelligent
Crate controller with ethernet interface.

* Expanded Readout Control Language including a new crl interpreter ccrl for
converting crl --> ¢ code. There have been a number of FASTBUS readout options
added to improve the execution speed of the trigger lists.

3 Problems Fixed

¢ There are no problems only “features” which are constantly being “enhanced” to
better enable the user to improve his/her data acquisition system.

CHAPTER 1

CHAPTER 2

CHAPTER 3

1.1
1.2

1.3
1.4
1.5

2.1

2.2

23

3.1

3.2

33

34
3.5

Introduction to CODA ... 1-1
CODA 1.4 Capabilitieseeoveerieriierieeiieiiteiteste ettt ettt ettt e steesbaesbeesbeeeas 1-1
FUture EVOIULIONooiiiiiiieiie e ettt e et e e enaeeeeaeeean
HArdWare UPGIradESooueiiiieiiie ittt ettt sttt st b et e bt st e et e ean e e naeenbeeaane
Software Upgrades...........

Platform Independence

Reference MAterialscccueevuieriieiiiierieeiee ettt st seeebeesbaessbeensaeens
How to Report ProbIemS........ccocuiiiiiiiiiiiiiiieitee ettt 1-3
Joining the CODA Mailing LiSt.......cccoueiriiririnininenenieeneseteteeeeeeeeee e 1-3
CODA Architectural Overviewcccceeeeii, 2-1
DAt FIOW ...veeneiieiiecieeteeete ettt et ettt e s e e bt e esaeebeessbaesseesssaesaaesseessesnseenseeans

The Trigger System...
FrONt ENG Cratlsci ittt ettt b et e st nn e be e
The EVENE BUIAET ... e
On-line Analysis
Event ReCOIdiNGcciiiiiiiii

HIStOGram DISPIAYooiuiiiiiiiii e

DiagnostiC EVENT DUMIPoiiiiiiiiiie ettt e e e e e e e e nneennnee 2-4

Run Control ATCRILECIUIEvvviieeeeiriieeeeeereeeeeeeecre e eeeetaee e e eeerreeeeeeearreeeeeeeareeeeeens 2-4

State Machine Model 0f RUN CONEIOLcciiiiiiiiieieieeeseeesee e 2-4
User Definable Run Control COMPONENTSciuiiiiiiieeiiie ettt 2-4
Run Control Configuration Concepts
RUN CoNtrol USEI INTEIACE. ... eiiiie ettt ettt et e e be e saeenbeeenee

Data Analysis & MONItOTINGcc.eevertirriinieniinienientenie ettt ettt

A=Y 0|01 ST RTOTSSUPRURRN
Histogram Display
Formatted Event Dump

Using CODA ...,

L 20T o) 115 ¢ o) FT TR

The Network Definition File
The Run Type Dictionary............
The Run Type Configuration File...
The RUN Type OPtIoNS File.......cociiiiiiiiiii e e
Configuration FileS SUMMANYcoiiiiiiirieiiiiee ettt sre e sieenneseeen
Starting & Stopping a Run
The Options Menu in RUNCONEIOL.......c..uiiiiiiiiiiiecie e
RCDEFAULTS Environment Variable ..ot 3-7

The TriZEETr SUPETVISOL ...ccuviiiriiiriiiiiniieieeitet ettt ettt sttt

Configuring the Trgger SUPEIVISOL..........ccciiiiiiiiiiiiiie e
Enables and PreSCales........c.ooiiiiiiiiiiiie e e
MemMOry LOOKUP UNIES ...ttt e e e e e ene e s
Readout Controller Interface ...
TIMErS...ccciiiiiiieceee e
Synchronization Interval...........c.c.ccccceeeee.

Using the Read Out Controllers

Software CoNfIGUIAION............oiiiiiiei e nes
Using FASTBUS (the FSCC)...
Using CAMAC
Using VME

The EVent BUILAETuvviiiiiiiieiic ettt e s eeaaaeee s

Running an Analysis Programc.ccceceeriiiniieniiiniienieiieeieeee et

CODA User’s Manual -1

CHAPTER 4

CHAPTER 5

APPENDIX A

APPENDIX B

APPENDIX C

-2 CODA User’s Manual

3.6 Using the Event RECOTAETcooueiuiiiiiiieiiiieiee et 3-14

3.7 The Event DUmMpP UtIEY .c..ooveriiiiiiiiiieieeecectee ettt 3-15
Callable ROUtINEScoooooiiiiiiiiii 4-1
CAMAC I/O LIDIATY ...ttt sttt ettt et 4-2
FASTBUS I/O LIDIAIYcoueruiiiiriiriinienienieieeteteteiteeei ettt et 4-6
CONSOIE LOZZETcneniiiiiiieiteieeie ettt ettt 4-8
Error Message LiDIaryccc.coieiiirieiiinieiiiieceteneeesie ettt et s 4-9
EVvent I/O LADTAIYc..oovuiiiiiiiieeiecte ettt ettt ettt 4-11
HiStOZIAMIMINGc..eiiiiiiiieeieteeet ettt ettt ettt et s be et e sbe et e b e e s eeeene 4-14
Run Control COMMUNICALIONS......cc.eetertieienieeteneenienieentesterieetesieeresbeesesbeesesseeneenne 4-17
Spying: Data Acquisition RPC Library.........ccccccevveriiiniiniiiinienieciceeccneeeieee 4-20
UHEES ..o 5-1
COTL ettt ettt e sttt et e a e st 5-2
CAUMPRISE .ttt ettt et a et s b et s bt e e e bt e b e es et e eneesaeeneesaeenees 5-3
CeEAMP/XCEEAMP ..ot 5-4
CRIMISE . .veeuteenttesuteettesuteebtesut e e beesateeabeesabeenbee s bt e easeesateeabeesabeeabeesaseenbeenbbeenbeebaesabeenaeesaseas 5-6
1031 USSR SRRPRTR 5-7
COAA_ACTIVALE ..eeiiiiieie ettt ettt e e e e e e e e et e e e e e e e e et aaaaaaeseteeeeaeeeesesessssssssssssnsnnnnees 5-8
COAATTT ittt ettt ettt sttt ettt e sa e sae e 59
INAKEIIST ..ttt ettt sttt ettt e b et b et ettt et e bt et e s ae e e sas 5-10
VEITIOML .ttt ettt ettt et e bt eatesa e eate s bt eate s bt ea b e s bt et e s bt e st e eb e et e ebtemteebe et e eb b e bt eneenaeeneenaes 5-11
Run Control Configuration File Formats A-1
TCINEEWOTK ..ttt ettt ettt b et et sbe et ebee e eae A-1
TCRUNTYPES ...ttt ettt ettt et sbe e sat e st esanesaes A-2
<TUNTYPE>.CONTIG ..ottt A-2
STUNTYPES.OPLIONS ..ottt s s s A-3
TCRUNNUMDET ..ottt A-4
TCDETAULLS ...ttt sttt ettt e A-4
TCEXPEIIMENE ..ttt ettt ettt ettt sbe et bt e e eae A-4
TCPTIOTIEY 1.ttt ettt ettt et e st et e st s beesaeesabeesanesars A-4
CODA 1.4 Support for the Trigger Supervisor B-1
Readout Controller Configuration File C-1
FALE FOTMAL ..ttt ettt e C-1
COMPILET FIAZS ...ttt sttt et s sabees C-1

APPENDIX D

APPENDIX E

APPENDIX F

(@0 e [N TTe] 4 1o 1 - E RPN C-2

Language EISMENtSc..coceiiiiiiiiiinieieeteteeteee ettt ettt C-3
EXAMPIE FILE ...coiiiiiiieiieee et s C-7
The CODA/EPICS Interfaceccoocoooeiiiiii, D-1
EPICS REQUITEMENLS.ccoutiiiiiiieiiienieeieestteitest ettt sttt et esateesbeesaseenaee s D-1
CODA REQUITEIMENLSeuvenvenieiienienieiieiteiteiteeniesteesessestesteteseeneensenteseeseesesuesaeesessesaennen D-1
CEIMON REQUITEMENLS.....c.eeiiriieieeienieeienieeieeitenteeiteste et seeeee st estesieesbesieenbessnenseeas D-1
CEIMON Configuration fIlesccceoieiienieiiniiiinieieneeic e eneieeas D-2
CEBAF Common Event Format ... E-1
EVeNt FOIMAL........cooiiiiiiiiiicieieecetet ettt E-2
Physical Record FOIMALccceiuieiiiiiiiiieieeeee et E-5
INAME DICHONATY ..ottt ettt ettt et sbe e sbeesaesbeenaesanens E-5
CODA Event Bank Definitionsco..coe F-1
Standard Physics EVENT......ccccociiiiiiiiiiiiiieiiieneeetec et F-1
Event ID Bank.......c.ccocoiiiiiiniiiiieieieneeeeee ettt F-2
Readout Controller Data Banksccceeieiiriininienieee e F-2
Run Control and Sync EVENLScccoiiiiiriiiiniiiiieneeteneeteeeteieeteseee e F-2
SYNC EVENT ..ottt ettt st ettt et st e bt e st e st esabeeae F-3
PreStart EVENT ..c...ooiiiiiieee ettt sttt s F-4
GO EVENT .ttt ettt st st F-4
Patse EVENT....c..cociiiiiiiiiiiiiiccictceeee ettt F-5
ENA EVENT ..ottt sttt ettt e s F-5

CODA User’s Manual -3

-4 CODA User’s Manual

CHAPTER 1
1

Introduction to CODA

1.1

CODA (CEBAF Online Data Acquisition) is the data acquisition system for physics
experiments running at CEBAF. This manual describes version 1.4 of CODA, which is
the initial working version for CEBAF Hall C experiments. This release of CODA is
appropriate for both detector prototyping/testing systems as well as moderately complex
experimental systems requiring I/O throughputs of greater than 1Mbyte/sec (FDDI). It
is intended as a “bridge” release to CODA 2.0 implementing a number of features nec-
essary for running CEBAF online experiments but still considered as a system under
development.

CODA 1.4 Capabilities

CODA 1.4 is designed to run on both an HP_UX (Hewlett-Packard/RISC) as well as an
Ultrix (DEC/RISC) host, connected via ethernet or FDDI to multiple intelligent front
end crates, FASTBUS and VME. CAMAC crates may be interfaced through VME or
stand alone (using the CES VCC2117 controller). If events are acquired over ethernet,
data rates are limited to roughly 250-700 kbytes/sec depending upon the single board
computer used. Using FDDI (through a VME interface) practical data rate limits are
roughly 2.5-3.0MBytes/sec. Event rates are limited by the front end latency and the size
of the event, with rates as high as 2-3 kHz measured for reading a single module in
FASTBUS over ethernet, and 16 kHz for reading a single register in VME.

The main run control portion of the software runs as a single process on a Unix worksta-
tion (single user operation), and can communicate with one or more FSCC’s (FASTBUS
Smart Crate Controller) and/or one or more VME/CAMAC single board computers, up
to 32 total. These front end computers, referred to as Read Out Controllers (ROC), run a
multi-tasking real-time kernel called VxWorks.

Trigger information may be fed directly into each ROC or into the Trigger Supervisor
(TS), a high speed custom trigger interface designed at CEBAF. The Trigger Supervisor
supports up to 12 inputs with pre-scaling by up to 224 As many as 3 levels of experi-
ment specific trigger logic may be connected to the TS for hardware event selection.

On-line analysis takes place as a single process running on a Unix workstation (not nec-
essarily the same machine as is running Run Control). Event fragments from all ROC’s
are automatically merged into a single event by an Event Builder (EB) and presented to
the user’s analysis program. Events which pass the user’s selection criteria may then be
written to a disk file or directly to tape.

Direct control/monitoring of experimental apparatus is no longer supported with CODA

1.4. The old Slow Controls package is currently being replaced with an interprocess
communications interface with EPICS (Experimental Physics and Industrial Control

CODA User’s Manual 1-1

1.2

Introduction to CODA

System). The EPICS system is now the supported slow controls interface at CEBAF for
both the accelerator as well as the experimental halls. A number of EPICS control sys-
tems (including HV control/monitoring) are in development by the Data Acquisition
Group. See Appendix D for more information.

Future Evolution

1.2.1

1.2.2

1.2.3

1-2 CODA User’s Manual

The next planned release of CODA for 1995 is Version 2.0. A number of enhancements
will be implemented in order to support larger and more complex experimental systems.
Some of these as well as future improvements are described below.

Hardware Upgrades

To remove the ethernet bottleneck, FDDI and other data links (i.e. ATM) will be sup-
ported to move data from VME crates to the event builder. (FDDI is now in operation at
CEBAF). This will take place in two steps: first, links from FASTBUS into a VME crate
will allow for building events under the control of a single board computer at VME
backplane speeds (~10-15 Mbytes/sec), and forwarded to the event builder over FDDI
or other available link. Later, a parallel event builder will be added to expand the band-
width to over 100 Mbytes/sec. This may require custom hardware, but the preference is
for future networking technology to meet this need.

Support for multiple workstations and processors in a processor farm will be added
within a year. This will allow on-line analysis capability to be expanded to hundreds or
thousands of MIPS.

CEBAF has begun testing CAMAC crate controllers with built in processors and ether-
net interfaces. This will permit high performance, small data acquisition systems to be
constructed from a workstation plus a single CAMAC crate with only an ethernet con-
nection between them.

Software Upgrades

A version of the run control interface is now being tested which allows for multiple
operators. That version (2.0) will also support running multiple copies of CODA (run-
ning different experiments) to co-exist on a single Unix machine.

Following that version, security and locking features will be added. In addition, graphi-
cal configuration editors will be added to aid in setting up CODA. Error logging and
handling capabilities will be greatly enhanced by a new distributed message handler,
which will include logging and report generation capability.

Data logging will be expanded to include support for labelled tapes (DAT and 8mm at
first).

Platform Independence

Ports to additional workstations (other than ULTRIX and HP-UX) may be done by col-
laborating labs, with required changes merged into the sources at CEBAF (conditional
compilation). Attempts will be made to keep CODA compliant with programming stan-
dards such as POSIX, ANSI C, etc., so that it should not be too difficult to port to addi-
tional hosts.

1.3

Reference Materials

Support for additional FASTBUS, VME, and CAMAC interfaces will be added when
there is a compelling need. Support for a real-time kernel other than VxWorks is not
currently being considered.

Reference Materials

14

Other documents and manuals which will be useful in understanding and using CODA
include:

1. CODA Application Notes

2. WWW (Mosaic) CODA Home Page

3. The Trigger Supervisor User’s Guide

4. PAW Reference Manual (and associated CERNLIB manuals)

How to Report Problems

1.5

Please mail any bug or problem reports to coda@cebaf.gov, including a description of
the problem and including any relevant configuration files which may be needed to
reproduce the problem. Also include a description of the hardware used. Suggestions for
improvement are also welcome.

Joining the CODA Mailing List

CEBAF is now running a mail server which supports user subscribable mailing lists. To
improve communications with CODA users and interested parties, a new mailing list
has been created. To join the list, send a message to mailserv@cebaf.gov containing the
line:

SUBSCRIBE CODA-L

To remove yourself from the mailing list send the line
UNSUBSCRIBE CODA-L

To get help on other capabilities of the mail server, send the line
HELP

Mail sent to the address coda-1@cebaf.gov will be forwarded to all subscribed users.
This will be one important mechanism that the CODA developers will use to post prob-
lem fixes and announcements of new versions.

In addition to the mailing list, the CEBAF Data Acquisition Group maintains a WWW
site accessible via the CEBAF home page (http://www.cebaf.gov/). General informa-
tion about CODA, current developments and releases etc. can be obtained from this site.

CODA User’s Manual 1-3

Introduction to CODA

1-4 CODA User’s Manual

CHAPTER 2

CODA Architectural
Overview

2.1

This chapter gives an overview of the system architecture for CODA. Operating instruc-
tions for each component of the system will be given in the next chapter.

The system can be broken down as follows:

trigger system

front end crates (digitizers, etc.)
event builder

on-line processing

event logging

SN O

host computer and X-windows displays
This chapter will discuss first the data flow from trigger to tape. Next an overview of the

run control architecture will be given (how a user controls data acquisition), and finally
the set of offline data analysis/monitoring tools will be described.

Data Flow

2.1.1

Valid triggers cause the digitizers(ADC/TDC) to convert and be read out in the front end
crates. Data from each crate is then transmitted to the event builder and then to an on-
line analysis program. Events which pass a software filter (if any) may be written to an
event file. The following sections describe this process in more detail.

The Trigger System

The trigger system contains the logic capable of making very fast decisions about when
to acquire a physics or calibration event. These decisions are generally made using a
small subset of the detector signals. Each experiment will, of necessity, design trigger
electronics customized to that experiment. In order to simplify system integration, a
common trigger interface, called the Trigger Supervisor, has been designed. For small
systems or test setups, the Trigger Supervisor may be omitted.

The Trigger Supervisor

Frequently, trigger systems are built with 2 or 3 levels of event selection logic. The first
level makes a very simple and fast decision based on hits in scintillators or other fast
detectors. To keep deadtime low, this logic must operate at the highest rate (physics +
background) expected by the experiment. When an event passes this level 1 trigger,
more complex computations are performed by the level 2 logic. The level 2 trigger need
only be capable of handling (with low deadtime) the output of the level 1 logic.

CODA User’s Manual 2-1

2.1.2

2-2 CODA User’s Manual

CODA Architectural Overview

The CEBAF Trigger Supervisor (TS) is capable of interfacing with up to 3 levels of
experiment specific trigger logic, with 12 independent level 1 inputs. Eight of the 12
inputs can be prescaled (4 by up to 224), and each can be individually enabled or dis-
abled. When any input is accepted, all 12 trigger inputs are latched to form a 12 bit
address. Using this address, three items are retrieved from local fast memory: the event
class type (how many levels of triggering for that event), a level 1 mask (How many of
8 total outputs fire, useful for conditionally generating gates), and a readout list number
(physics event type, forwarded to the readout controllers).

A sequencer is then started which handshakes with any higher level trigger logic. Once
a trigger passes the highest level trigger and the digitizers have completed their work,
the event type (readout list number) is forwarded to all front end crates instructing them
to read out that event. Simultaneously, if the multi-event buffers (described below) are
not full, the TS enables level 1 triggers again. (See the Trigger Supervisor User’s Guide
for a detailed description of the capabilities and use of the Trigger Supervisor.)

Custom Triggers

Alternatively to the Trigger Supervisor experimenters may produce a completely cus-
tom trigger system which interfaces to each ROC (readout controller) using a subset of
the TS-ROC cable protocol. A hardware trigger interface card has been developed for
both the FSCC and VME ROC:s to facilitate this implementation. This subset allows up
to 4 trigger bits to be latched upon receipt of a strobe signal. Then each ROC signals its
availability to receive the next trigger via an acknowledge (output) signal.

See the application notes for further details, including example NIM hardware for
implementing the necessary external logic for a single FASTBUS ROC.

This mode of operation is expected to be used primarily in small systems not requiring
the full capabilities of the Trigger Supervisor.

Front End Crates

Signals from the detectors are processed by boards in FASTBUS, VME, VXI, or
CAMAC crates. These boards are then read out by a processor referred to as a “read out
controller” (ROC). Generally, a single ROC handles only one crate of electronics (for
performance reasons).

The ROC serves 4 main functions:

1. communicate with the Trigger Supervisor
2. read event data

3. send event fragments to the event builder
4

. perform setup and initialization functions on its crate of electronics at the request of
the host computer.

The ROC for FASTBUS is the FSCC (FASTBUS Smart Crate Controller), a Fermilab
designed board manufactured by BiRa. It is a sequencer based single board design with
an on-board 68020 and an ethernet interface. The VxWorks operating system has been
ported to the FSCC at CEBAF, and it has passed performance tests. Established mea-
surements confirm a 20Mbyte/sec handshaked data transfer rate and up to 40 Mbyte/sec
read rate for high performance slaves implementing pipeline transfers. A slot addressing
overhead of <10 usec under processor control has been measured with currently sup-
ported FB library routines (sequencer controlled AS/AK lock time has not been mea-
sured). In addition to the ethernet interface there is a sequencer controlled parallel

2.1.3

2.14

2.1.5

2.1.6

Data Flow

output port capable of transferring data (10-20 meters) at 40Mbytes/sec into a VME
based dual ported memory.

For VME and VXI, single board computers running VxWorks (68K based) are required.
These boards are available from a large number of manufacturers with VxWorks sup-
port. CEBAF is currently using Motorola’s MVME167and MVME162 68040 boards.
For a VME FDDI interface CEBAF has implemented the Rockwell CMC1150 series
with a VxWorks Driver support package from Ross Microsystems.

For users requiring CAMAC front end crates, the Kinetic Systems VME interface
(model KS 2917) is supported (requires KS 3922 crate controller). Direct CAMAC
readout through the CES VCC2117 Smart Crate Controller (with ethernet interface) is
also supported. Since all CAMAC /O is done through the CAMAC standard routines,
any other interface for which these routines are available will also work (e.g. the CES
branch highway interface).

The Event Builder

Each ROC operates independently, reading and buffering its event fragments and then
sending it via ethernet/FDDI to the event builder process on a Unix workstation. This
process can handle multiple connections (up to 32 ROC’s), and builds the event into the
CEBAF common event format (see Appendix E). Event fragment numbers are checked
to detect missing data. If synchronization events are implemented (through the Trigger
Supervisor) then the event builder can automatically resyncronize the event stream flag-
ging the previous section of “bad” events.

The Event Builder supports spying on the data stream from multiple sources (i.e. copy
an event from the stream), as well as inserting user specified events into the event
stream, through a remote procedure call (RPC) interface.

On-line Analysis

The on-line analysis program is written by the experimenter using utility routines from
CODA to read and write events. HBOOK routines from the CERN program library are
recommended for histogramming applications because of the large number of compati-
ble utilities and routines.

It is possible to improve performance by incorporating both the Event Builder and the
Analyzer into a single program. The command coda_ebana is the default Event Builder/
Analyzer provided with CODA.

Event Recording

All events are written in a CEBAF standard event format (see Appendix E). Currently
users can log event data to standard file system named output files. Rudimentary support
for writing directly to tape is provided by using the tape (8mm or DAT) device file as the
logging file name (i.e. /dev/rmt/Omn).

Histogram Display

The CERN program PAW (Physics Analysis Workstation) may be used to interactively
display HBOOK histograms either live (ULTRIX only) or stored on disk. This very
large and capable program includes data manipulations, peak fitting, and many other
features. (See the PAW Reference Manual for more information).

CODA User’s Manual 2-3

CODA Architectural Overview

2.1.7 Diagnostic Event Dump
CODA contains a diagnostic utility (cefdmp/xcefdmp) to print the contents of an event
in an easy to read format. Recursively embedded structures are displayed along with
ASCII titles obtained from an event tag dictionary customized by the user.
The X-windows version of this dump utility presents the structure of the event in a
graphical form, with data optionally shown in pop-up windows.

2.2 Run Control Architecture
The data acquisition system is controlled by a single Run Control process running on a
host machine or workstation. This program views the experiment as consisting of a
number of subsystems; each subsystem in turn contains one or more components. The
following subsystems are implemented:
1. user trigger system
2. trigger supervisor
3. readout controllers (1 or more)
4. event builder
5. analysis (currently a single Unix process)
6. output device
7. EPICS Interface (not yet implemented)
8. data acquisition run (this conceptual subsystem describes the behavior of a data
acquisition run)

9. arbitrary user subsystem
Each subsystem may consist of O or more components (i.e. there may be 3 ROC’s mak-
ing up the “readout controllers” subsystem). The minimum system is one ROC, one
event builder, and one analyzer.

2.2.1 State Machine Model of Run Control
Each component is a collection of software and possibly hardware which at any point in
time is in one of several possible states. The state transition diagram shown in Figure 1
describes the behavior of a single component, and of the system as a whole.
Each command (Configure, Download, Prestart, Go, Pause, End, Terminate) is automat-
ically propagated from the system down to each component in a user definable priority
order. If any component fails to successfully make the state transition, the system as a
whole remains in the previous state. Many transitions are performed asychronously
through intermediate states not shown in the figure.

2.2.2 User Definable Run Control Components

2-4 CODA User’s Manual

Most of the components in a CODA system are pre-defined by CODA and only require
configuring (e.g. setting trigger supervisor options). However, CODA allows for two
different user created subsystems and components: the user’s trigger subsystem & com-
ponents, and the arbitrary user subsystem & components. Each of these components is
defined to Run Control as a remote procedure callable (RPC) service. (The CODA/
EPICS interface will also be defined in this context.)

Run Control Architecture

FIGURE 1

2.2.3

State Transition Diagram

¢ Create

Booted
¢ Configure
I Configured -
Configure
Download
Terminate
- Downloaded |t
Prestart
End
* Pause
Paused Active
v Go
Terminat
erminated End

The RPC server defines a pre-defined set of entry points which correspond to the set of
state transitions (Create, Config, Download, PreStart, Go, Pause, End, Delete). Values
returned by these RPC routines indicate whether the requested action completed suc-
cessfully, failed, or is still pending (in which case Run Control will periodically request
a status update until it succeeds, fails, or a time-out elapses).

Details of how to create a user defined component will be given in a future application
note.

Run Control Configuration Concepts

The Run Control process is configured through a set of ASCII files, which may be cre-
ated and edited with any text editor. These files are located in a directory pointed to by
the environment variable RCDATABASE. In the simplest case, three files are necessary.
(For more complete descriptions, see Chapter 3.)

The first configuration file is the Run Control Network Definition File, rcNetwork. It
lists each component (RPC service) in the system by name, and gives its internet
address. Certain components are pre-defined by CODA and are not included in this file.

The second configuration file, rcRunTypes, defines a set of “run types”, giving a corre-
spondence between run type names and run type numbers. (Prior to starting a run, the

CODA User’s Manual 2-5

224

23

CODA Architectural Overview

user specifies what type of run is desired by entering a run type name. Examples might
be “physics” or “calibration”.)

The third configuration file, the Run Configuration File, specifies a configuration string
(generally the name of another file) for each component to be included in the run. The
name of this file is the name of the run type followed by “.config”, e.g. physics.config.
There must be one such file for each defined run type. Each component listed in this file
becomes part of any run of that type. (Calibration runs, for example, may only require a
subset of the ROC’s).

The configuration string in the Run Configuration File is used as an argument to the
Config routine of that component. For example, a user may define a component named
ROC3 of type ROC (readout controller). The configuration string will be sent to that
readout controller during the transition to the Configured state. The CODA standard
ROC code interprets this string as the name of a file containing the user’s data acquisi-
tion readout lists (NOTE: in CODA 1.4, this must be the full name of the compiled
object module). In general, the meaning of the string is dependent upon the component
server code.

Run Control User Interface

The user communicates with the Run Control process via a Motif (X11) windows dis-
play. The top level window contains push buttons to control a run (state transitions), as
well as menu selections to implement or disable various experiment control options.
Information on the status of most of the subsystems in CODA can be accessed, each
subsystem interface is created on demand as the user requests a subsystem screen by
clicking on the appropriate menu selection.

Data Analysis & Monitoring

231

2.3.2

2-6 CODA User’s Manual

The data analysis program, under control of the run control program, reads events from
the event builder, performs some analysis, and optionally writes the events to the event
output subsystem.

Event I/0

Five routines are provided for event I/O: evOpen, evClose, evRead, evWrite and evloctl
(see Chapter 4, Event I/O routines). These routines currently perform I/O to files, and
will eventually be able to read events from the Event Builder and write them to the
Event Recorder. Events are checked on output for conformance to the CEBAF event
format at the outermost level.

Histogram Display

Support is provided for HBOOK routines’ using shared memory (ULTRIX Only). This
allows histograms to be displayed using PAW? (Physics Analysis Workstation) as they
are being accumulated. Histograms may be written to disk either by PAW or by the anal-
ysis program, and read back again later with PAW or another analysis program. The
cdumphist utility allows to user to periodically dump histograms to a disk file.

1. HBOOK is a package of histogramming routines, and is part of the CERN program library.
2. PAW is also part of the CERN program library.

233

Data Analysis & Monitoring

Formatted Event Dump

For diagnostic purposes, there is an event dump utility “cefdmp”, which can dump event
records obtained from a readout controller, the event builder, the event logger, or an
event file. This program uses information contained in the event, along with an event tag
dictionary (which gives names and titles for each piece of an event), to display an easily
readable dump of a single event. This is helpful to verify operation of the readout con-
trollers (and the corresponding readout lists and hardware), as well as to verify the out-
put of an analysis program.

An X-windows version of this utility, xcefdmp, can also display the internal structure of
the event graphically, and displays selected pieces of the event in pop-up windows.

CODA User’s Manual 2-7

CODA Architectural Overview

2-8 CODA User’s Manual

CHAPTER 3 USiIlg CODA

3

This chapter explains how to use each piece of the CEBAF On-line Data Acquisition
(CODA) system. Examples of configuration files may also be found in the CODA
online examples directory ($CODA/examples/).

3.1 Run Control

In order to gain access to the Run Control program, the user must execute the following
command, either interactively or in a “.login” file':

setup coda/l.4
Once this is done, Run Control is started by typing:

RunControl

FIGURE 1.1 Run Control top level window (Motif Interface)

RunControl

File Mastership Preferences Options

Configure T

:].E—I—l_h Alarms Temp

Network Components Slow Controls

Run Type: Unspecified

Last Run L
Integrated

Hz Differential lBfsec

1. “setup” is a CEBAF script for gaining access to optional software. If setup is not available, fol-
low instructions in the README file in the CODA distribution.

CODA User’s Manual 3-1

3.1.1

3-2 CODA User’s Manual

Using CODA

At this point, Run Control reads a file of default settings (defined by RCDEFAULTS
environment variable), and then it displays the top level window (see FIGURE 1.1).
Next, two configuration files are read: the Run Control Network Definition file (file
name: rcNetwork), and the Run Type Dictionary file (file name: rcRunTypes). These
files are pointed to by the environment variable RCDATABASE, which is the name of
the directory in which the files rcNetwork and rcRunTypes are to be found. If this envi-
ronment variable is not defined, it defaults to rcDatabase. (Note that the current setup
script for CODA defines RCDATABASE to point to an example directory of demo
files.)

The Network Definition File

Each entry in the network file defines one distributed component (other than the Run
Control process itself) in the data acquisition system. Each entry has the following for-
mat:

componentName number type hostName [command]

The component name is an arbitrary alphanumeric name by which to refer to this com-
ponent, and is used in other files. The component number is a number from O to 31 used
in data structures created by the component (e.g. readout controllers insert this number
at the head of their bank of data). The component fype is one of the supported types
given below:

TS -- trigger supervisor

ROC -- readout controller

EB -- event builder

ANA -- analysis

ER -- event recorder

UC -- user defined component

LOG -- console logger

The host name is either the IP host name (e.g. xyz.cebaf.gov) or IP address (e.g.
123.45.67.89), and is used along with the component type to find the program on the
network. Each component type is assigned an RPC program number (not user config-
urable), because there can only be one program of a particular number on each host
(RPC restriction), Run Control can only communicate with at most one component of
each type on a single machine. (This restriction will be removed in CODA 2.0.)

The optional command may be used to automatically start the program containing the
component. If RunControl fails to connect to the component during the “Download”
transition (described below), it spawns the listed command, passing it the first four
fields as arguments. That is, it effectively executes the following:

command componentName number type hostName

command may simply be an executable file, or may be a script to start a program. If the
component is to run on a different machine than RunControl, rsh is used to create the
process on the remote machine. If rsh is used, remember to place appropriate entries in
the user’s .rhosts file (see your system administrator if you need help doing this). For an
example of a script which invokes “rsh”, see the file coda_activate in the directory
SCODA/bin. This script may be used to start any program on another machine using the
following as command.

3.1.2

3.1.3

Run Control

$CODA/bin/coda_activate -p ~/mydir/myprog
where the argument after the -p is the filename of the program to start.

RPC programs (components) may be started manually (not recommended), or they may
be started by the inet daemon on a machine, or they may be started by Run Control
using the command given in the network file. In order to have them started by the inet
daemon, the program number and file name must be added to the inet database (/etc/ser-
vices on Ultrix).

Example rcNetwork file:

ROCO 0 ROC hostname0

ROC1 1 ROC x.cebaf.gov

MYEB 7 EB xyz $CODA/bin/coda_activate -p ~/work/ana
MYA 7 ANA xyz S$CODA/bin/coda_activate -p ~/work/ana

Note that it is necessary to include an entry for the event builder . It should have the
same arguments as for the ANA (this restriction of analyzer and event builder on the
same node will be lifted in CODA 2.0). It is, however, not necessary to include an entry
for a console logger. One will be added automatically on the same machine as RunCon-
trol.

By default the console logger saves all log messages in a file called coda_console.log in
the same directory as that from which RunControl was activated. This default may be
overridden by specifying the logger in the rcNetwork file. For example, the following
line disables the logfile:

LOG 0 LOG $HOST $CODA/bin/coda_activate -nolog

For more detailed information, refer to the section on coda_activate in Chapter 5.

The Run Type Dictionary

The Run Type Dictionary contains one entry per run type. Run types are arbitrary names
assigned to a collection of hardware, software, and configuration options. For example,
a particular experiment may require 2 distinct sets of running conditions, one for phys-
ics, and one for calibration. In this case, run types of “physics” and “calibration” could
be defined in the dictionary. Each entry has the following form:

runTypeName runTypeNumber
where runTypeName is a user defined alphanumeric string, and runTypeNumber is a

user assigned integer that will be used to refer to this run type in calls to system rou-
tines.

Example file:

physics 1
calibration 2
test 3

The Run Type Configuration File

For each run type in the dictionary, there must be a corresponding configuration file of
the same name as the run type, with the extension “.config”. So for the example above,

9«

there would be three files, “physics.config”, “calibration.config” and “test.config”.

CODA User’s Manual 3-3

3.14

3.1.5

3-4 CODA User’s Manual

Using CODA

These files are called Run Type Configuration files; each of these files contains configu-
ration information for each component participating in that type of run. Each entry in
the file has the following format:

componentName configString

The configString is a string which is passed to the component to configure it for this type
of run. For most components, this string is in fact the name of a component specific con-
figuration file. These configuration files have formats which are specific to the compo-
nent types (TS, ROC, etc.), and will be discussed in the sections of this chapter that deal
with those subsystems. These files are parsed by the components in parallel, speeding
up starting a run. Currently, the EB component requires no argument.

Example file:

ROCO drift chamber.o
EB
ANA data logging filename

The Run Type Options File

For each run type there is a run options file with an extension of “.options” (e.g. “phys-
ics.options”). This file contains values for any options which may vary from run type to
run type. The format of this file is

optionName optionvValue

Currently, one supported optionName is “runNumber”, which is used to control assign-
ing a number to the next run. If the corresponding optionValue is “increment”, the cur-

rent run number (stored in file rcRunNumber) is incremented as the run is started. If the
option value is “noincrement”, the value in rcRunNumber is used and not modified. The
default (when no file or entry is present) is “increment”.

Example file:
runNumber increment

In addition to the runNumber option, the user can in the options file define user supplied
scripts to be executed at the various transitions during the stopping and starting of runs.
The format of each line is

transitionName priority scriptName

The transitionName can be one of: download, prestart, go, pause, or end. The priority is
an optional number defining the precedence the script takes in the transition sequence
(the default is 29. See Appendix A for details on priority numbers). The scriptName
specifies the name (including path) for the executable shell script. RunControl will
pause the transition until the execution of the script has been completed - successfully or
unsuccessfully.

Configuration Files Summary

A summary of the configuration files for CODA is given below. Further details are
available in Appendix A.

Run Control

FIGURE 1.2 CODA Configuration Files
rcDefaults
physics.config physics.options
rpctimeout... -
_>
roca phys.o h
rcNetwork prys.o
.roca1 roc...
rcRunTypes
calib.config calib.options
physics -
calib P
rcExperiment rcRunNumber rcPriority

3.1.6 Starting & Stopping a Run

At the top of the Run Control window is a set of push buttons used to control a run.
When the program is first started, Run Control is in the “booted” state, and only 2 but-
tons appear: “Configure” and “Quit”. Pushing the “Configure” button causes Run Con-
trol to first prompt for a run type, giving as options entries from the Run Type
Dictionary. Next, the “.config” file is opened, and configuration strings are read.

In each of the following states, buttons appear at the bottom left which are appropriate
for that state. Commands which cause state transitions are automatically propagated out
to all subsystems and components, and will cause actions defined by those subsystems
to be executed. In the rest of this discussion, some of the actions are mentioned, but for
a full discussion of what happens to a particular subsystem during a state transition, see
the corresponding subsection in this chapter for that subsystem.

In the “configured” state, 3 buttons appear: “Download”, “Quit”, and “Configure”.
Pushing “Download” causes each component to perform any actions necessary to apply
the selected configuration (update hardware, etc.). It is at this point that data acquisition
readout lists are downloaded into the readout controllers, for example. If this step com-
pletes successfully, Run Control is in the “downloaded” state.

In the “downloaded” state, 4 buttons appear: “Prestart”, “Auto Start”, “Abort”, and
“Configure”. Pushing “Prestart” causes each component to perform any actions neces-
sary to prepare for data acquisition, and enters the “paused” state. Pushing “Auto Start”
is equivalent to pushing “Prestart” followed by “Go”. Pushing “Abort” returns Run
Control to the “configured” state (previous menu).

CODA User’s Manual 3-5

3.1.7

3-6 CODA User’s Manual

Using CODA

In the “paused” state, “Go” and “End” buttons appear. The first enables triggers and
moves to the “active” state, and the second returns to the “downloaded” state.

In the “active” state, “Pause” and “End” buttons appear. The first disables triggers and
transitions to the “paused” state, and the second disables triggers and returns to the
“downloaded” state (ends the run).

Graphical feedback on these state transitions may be obtained by clicking the mouse in
the bottom lefthand rectangle of the main RunControl view. This brings up an additional
Run Control window showing the state transition diagram and all allowed transitions, as
well as indicating the current state. All state boxes in this view are buttons which allow
the user to control the run from this window alone.

The Options Menu in RunControl

There are a number of optional features of Run Control the user may find useful when
communicating with service components and starting and stopping of Runs during an
experiment. These can be accessed without editing RCDATABASE files through the
Options menu in Run Control. Below is a list of available Options and a brief descrip-
tion of each.

RPC Timeout Determines the time in seconds the Run Control rpc
communication will wait for a reply. The rpc request
is issued 3 times. The timeout refers to a single

request.

Set Run Number Automatically edits the rcRunNumber file with a user
input run number and updates the Run Control dis-
play.

Automatic Reboot Specifies a timeout for Run Control to wait before

automatically starting up a new Run.

Set Event/Data Limit Allows the user to set both (or either) a number of
events limit or a total data limit before automatically
ending the run.

Log Events to a File The user may optionally specify the name of a file in
which to write events or turn off data logging alto-
gether.

Remote Run Display The user may specify an X Windows server to display

an enlarged Run Status Box (no functionality).

Choosing the following options is identical to clicking on one of the 4 front panel win-
dows in RunControl (Slow Controls is not implemented in CODA 1.4).

Select Active Component Provides a list of the active components for the partic-
ular runType chosen. Selecting a given component
will display the event and data rates from that compo-
nent in the lower right panel of Run Control. (Same as
clicking the upper left front panel of Run Control.)

Show Run Status Brings up the Run Status Button Display showing the
current state of Run Control and providing the avail-
able transition buttons to control the Run. (Same as
clicking the lower left front panel of Run Control.)

Show History Brings up a graphical display of the event and data
rate history for the component chosen using the Select

3.1.8

3.2

The Trigger Supervisor

Active Component Option. (Same a clicking the
lower right front panel of Run Control.)

RCDEFAULTS Environment Variable

Several of the default initial settings for Run Control may be overridden by specifying
an optional defaults file. This file is identified to Run Control through the RCDE-
FAULTS environment variable. If this variable exists, Run Control treats it as specify-
ing a text file containing initial settings. The format of the file is similar to that of the
other configuration files, each line specifying a setting name and its initial value. An
example RCDEFAULTS file is:

! A comment line

buttonfeedback true
online true
rpcupdate true
rpctimeout 3

verbosereporting true

The allowed setting names, which may be specified in upper or lower case, are:

buttonFeedback Determines whether the various buttons on the Run Control
command panels show feedback describing their actions
when the mouse cursor enters them. The default is true.

online Determines whether Run Control is online. A value of false
will result in state transitions being performed without any
communication with the components described in the rcNet-
work file. This is useful for diagnostics. The default is true.

rpcUpdate Determines whether updating of variables from components
in the rcNetwork file occurs. The default is true.

rpctimeout Determines the time in seconds the Run Control rpc commu-
nication will wait for a reply. The rpc request is issued 3
times. The timeout refers to a single request.

verboseReporting Determines how verbose the status messages in the scrolling
status region are. The default is true (verbose).

The Trigger Supervisor

Current (CODA 1.4) Trigger Supervisor support is through communication with a spe-
cial type of readout controller (ROC). This ROC behaves as any other ROC except for
two differences. It possesses an rpc program number that identifies it as a trigger super-
visor (as opposed to the ROC program number). This defines the priority with which it
communicates with Run Control. Also, it is configured to be an “Asynchronous” ROC
meaning that it will not issue Prestart ,Go, Pause, and End events to the event builder.
Therefore, the event builder will ignore this ROC with respect to building physics
events. Any events generated by this component and sent to the EB will be treated as
user specific and be passed through untouched to the analyzer.

In the VME crate which holds the Trigger Supervisor module the coda_ts code must be
running on the resident CPU (i.e. MV 162 or MV 167). The programing of the trigger
supervisor is done though a compiled downloadable readout list to the running program.
Configuration of the trigger supervisor in the Run Control database is identical with the
normal readout controller only the type TS is specified in rcNetwork file.

CODA User’s Manual 3-7

3.21

Using CODA

The functionality and ease of configuration are being improved for the release of CODA
2.0, allowing the user the ability to program the TS through a simpler file format as well
as through a graphical interface invoked form RunControl. In the following sections a
description of the available parameters and their allowed values are described. For more
information, see the Trigger Supervisor User’s Guide. In Appendix B an example of a
TS readout list is provided and the TS programming described.

Configuring the Trigger Supervisor

In order to include the Trigger Supervisor into a setup, there must be an entry in the Run
Control network file with a type of TS giving its IP hostname/address. In addition, the
configuration file corresponding to the run type in use must have an entry for the TS
component (see the Run Control section for a discussion of these files). The configura-
tion file entry gives the name of a file containing values for the Trigger Supervisor
parameters in the following format:

parameterName parameterValue

When the Trigger Supervisor is downloaded, this configuration file is loaded into the
hardware. Parameters omitted from the file take their default values. Changes may be
made to the file’s settings using the Trigger Supervisor control screen.

TABLE 1

3.2.2

3-8 CODA User’s Manual

Trigger Supervisor Parameter Defaults

Name Default Value Comments
tsPreScale1,2,...12 1 (12 separate lines)
tsEnable OxFFF (all lines enabled)
tsEnablel,2,...12 1 (alternative to tsEnable)
tsStrobe 0

tsTriggerClass ‘L10K=1; TC1=1; TC2=0; TC3=0’
tsRocCode ‘RCO=1; RC1=0; RC2=0; RC3=0’
tsL1Accept ‘L1A1=1; L1A2=1;... L1A8=1’
tsRocEnable1,2,3,4 1,0,0,0 (single ROC)
tsRocLock 1 (force lock step operation)
tsRocLock4 0

tsClearPermitTimer 0 (disabled)
tsLevel1Timer 0 (disabled)
tsLevel2Timer 0 (disabled)

tsBusyTimer 0 (disabled)
tsClearHoldTimer 0 (disabled)
tsSyncinterval 0 (no SYNC events)

Enables and Prescales

The Trigger Supervisor has 12 trigger inputs. The first 8 of these are prescalable: the
first 4 by 224 the second 4 by 216 Prescales are entered as decimal numbers into the
appropriate box on either the pop-up box or the parameters screen. Each trigger input
may be enabled or disabled by clicking on the corresponding toggle button. The inputs

3.23

The Trigger Supervisor

may be used as triggers, or a separate trigger strobe input may be used to latch the 12
inputs. The strobe setting is selected by a separate push button.

Memory Lookup Units

The Trigger Supervisor has 3 memory lookup units (MLU’s), addressed by the 12 trig-
ger inputs (appropriately latched). The trigger class MLU is used internal to the Trigger
Supervisor to determine how many levels of user trigger to wait for. The readout list
MLU gives the readout list number to forward to all readout controllers. The gate output
MLU controls which gate output bits are set for each trigger pattern.

MLU contents are specified as logic equations, one equation for each bit of output.
Equations for each bit are separated by semicolons. Input bit names are t1,t2,...t12, and
can be negated with a leading slash (/). Output bit names are specific to each MLU.

TABLE 2

3.24

Trigger Supervisor MLU Output Bit Definitions

MLU BIT Description
Trigger Class L10K If set, this is a valid trigger pattern, else re-
enable triggers
TCA If set, this is a class 1 trigger
TC2 If set, this is a class 2 trigger
TC3 If set, this is a class 3 trigger
Readout Code RCO0,1,2,3 Binary code to send to ROC'’s for this trigger
pattern. Each bit must be programmed
separately.
Level 1 Accept L1A1,23,...,8 Drives front panel level 1 accept outputs. Each

bit must be programmed separately.
Equations are expressed as sums of products, with parentheses to nest terms:

rc2 = tl + t2*t3*/td4 + t5*(t6+t7*/t8)

Readout Controller Interface

The Trigger Supervisor supports up to 32 readout controllers (ROC’s) on 4 branches of
up to 8 ROC’s each. Each branch transmits readout codes from the Trigger Supervisor
readout code fifo’s to the ROC’s on that branch. The fifo’s can hold up to 7 codes, allow-
ing the Trigger Supervisor and front end modules (ADC’s and TDC’s) to be up to 8
events ahead of the ROC’s. The 4 branches operate independently, so that all ROC’s on
a branch are processing the same event (and must wait for the slowest on that branch),
but ROC’s on different branches may be operating on different events.This pipelined
mode of operation reduces the system dead time for systems that contain front end mod-
ules capable of buffering multiple events (generally 8).

Six parameters control the operation of this interface. The first four of these, “tsRocEn-
ablel,2,3, and 4”, indicate which of the 8 possible ROC’s are in use on the correspond-
ing branch. These 8 bit integers may be specified as a decimal number, or as a hex
number with a leading “0x” (e.g. Oxff).

Two additional parameters control whether pipelining is enabled or not. If tsRocLock is
set, all pipelining is disabled. If tsRocLock is 0 and tsRocLock4 is set, then pipelining is

CODA User’s Manual 3-9

Using CODA

disabled only on branch 4. If both are 0, pipelining is enabled on all 4 branches. (See the
Trigger Supervisor User’s Guide for more information about pipeline operation).

3.2.5 Timers

There are 5 timers in the Trigger Supervisor to assist in customizing the operation of its

state machine. Their names, maximum values, and meanings are given in the following

table.

TABLE 3 Trigger Supervisor Timers

Name Maximum Value Description

tsClearPermitTimer 2.6 ms Longest time during which a level 2 or level 3
reject will produce a fast clear signal. This is
meant to reflect the time interval during which
front end modules are willing to accept a fast
clear.

tsLevel2Timer 2.6 ms This timer is used with class 1 triggers to define
a time delay between the level 1 accept and
level 2 accept signals generated by the TS.

tsLevel3Timer 2.6 ms This timer is used with class 1 and 2 triggers to
define a time delay between the level 1 accept
and level 3 accept signals.

tsBusyTimer 2.6 ms The time period following level 1 accept that
can represent the conversion or dead time of
the front end module. The TS will not re-enable
triggers after an accepted trigger for at least this
time.

tsClearHoldTimer 5.1 us Width of the TS’s CLEAR output signal.

The first four timers are programmed in increments of 40 ns, and the last in increments

of 20 ns. E.g., setting tsClearPermitTimer to 50 gives a 2 us fast clear permit interval.

Setting any of the timers to O disables the feature.

3.2.6 Synchronization Interval

3-10 CODA User’s Manual

In pipeline mode, the Trigger Supervisor is designed to periodically pause and allow all
readout controllers to catch up (i.e. empty the readout code fifo’s on the trigger branches
and the corresponding event fifo’s on the front end boards), and verify that all ROC’s
have not dropped or gained an event. This is done by counting events up to the counter
tsSyncInterval, and then automatically generating a special code telling the ROC’s to
check their modules for any left over data (there should be none). Any ROC detecting
an error reports this to the error logger. It is expected that off-line analysis programs will
use this log to discard blocks of events in which a synchronization error occurred.

The synchronization interval should be small enough so that the probability of an error
in the window is very small. Making it too small, however, generates more sync events,
and therefore may increase the dead time slightly. The largest value possible is 65535,
and a value of 0 disables sync event generation.

3.3

Using the Read Out Controllers

Using the Read Out Controllers

3.3.1

The readout controllers are responsible for receiving a trigger code, executing the corre-
sponding readout list, and passing the event fragments on to the event builder. (In
CODA 1.4, this is accomplished by an IP socket connection over ethernet or FDDI.) In
addition, ROC’s cooperate with the Trigger Supervisor in checking event fragment syn-
chronization, and cooperate with Run Control in producing pseudo events to be sent up
the data chain upon change of state.

In CODA 1.4, three hardware ROC'’s are supported: the FSCC (FASTBUS Smart Crate
Controller)z, 68K VME boards running VxWorks for direct VME readout or interfaced
to CAMAC via any interface for which the CAMAC standard routines are available,
and for 68K based CAMAC smart controllers for which the CAMAC standard routine
library is available (such as the VCC21 17)°.

Software Configuration

Getting a readout controller operating consists of the following steps: (1) booting the
VxWorks operating system (done at power on either through boot script or direct from
ROMs), (2) downloading the CODA libraries and daemons, and (3) downloading the
user specified readout code (part of the “download” step in Run Control).

Each of these steps require the VxWorks node to have access over the network to the
appropriate file systems. Generally this is done via an rsh command, requiring an appro-
priate entry in a .rhosts file. See your local system manager for help in setting this up. In
addition, for Ultrix nodes running the BIND service, it will be necessary to put the
VxWorks node names into the name server. In all cases, it will be necessary to have the
names of the machines running RunControl and the Event Builder entered into the host
tables on VxWorks. This is done by the hostAdd command (usually in the boot script for
that board):

hostAdd “myhost”,”123.45.67.89"

It is also necessary to have the portmap daemon running on each machine to be used by
CODA in order for the remote procedure calls to function. Since this is not the default
for Ultrix nodes, the file /etc/rc.local will have to be edited to include the appropriate
commands (see your system manager for assistance). It is possible to test for the pres-
ence of the portmap daemon by typing the following at the Unix prompt:

/etc/rpcinfo -p myhostname
where ‘myhostname’ is the name of the machine you wish to test. This command will
either produce a listing of RPC programs active, or will report that the portmap daemon

is not running.

At CEBAF, the account used by the VxWorks single board computer to access files has
the following entry in its .cshrc file:

setenv CODA /path/to/version/of/coda

2. Sold by BiRa. See also “An Intelligent Readout Controller for FASTBUS, The Fermilab
FSCC”, Cancelo et al., Conference Record of the 1990 IEEE Nuclear Science Symposium, 292.

3. Sold by CES. Ortec is the local distributor.

CODA User’s Manual 3-11

3.3.2

3.3.3

3-12 CODA User’s Manual

Using CODA

and a boot script filename containing, for example, the following (for the FSCC):

cd “S$CODA/VXWORKS68K51/bin”
1d < coda_roc
taskSpawn “ROC”,110,spTaskOptions,8000,roc_coda

should be available and specified in the VxWorks CPU boot RAM.

Readout code is specified to CODA as a file containing commands for that controller
(either FASTBUS macros or CAMAC macros). This file is compiled into a download-
able object file by the makelist utility. For each ROC, the name of its compiled readout
file is entered in the configuration file for that run type (see section 3.1.3 on page 3-3).
When the “download” command of Run Control is executed, the files are downloaded
and linked into the polling or interrupt service routines.

NOTE: In a future version of CODA, the compilation will be done automatically, but
for CODA 1.4, the user must manually compile the list using the makelist script in
$CODA_BIN:

makelist myfile.crl 5.1

(the 5.1 indicates a VxWorks version number). Although currently only a single list is
supported, the ROC code will eventually be able to specify separate lists for each of the
16 event types (binary encoded on the trigger cable, 0 to 15); lists for state transitions
(download, prestart, go, pause, resume, end) are currently supported. Commands in the
list may write to control registers in I/O modules (e.g. to select a particular data regis-
ter), write data into the output stream (to insert user defined markers), or transfer data
from the I/0O modules to the data stream. See Appendix C, Readout Controller Configu-
ration File (Language Summary), for details of writing a readout list.

The output into the event stream of each readout list is a single bank containing 4 byte
integer data. The tag for the event is the readout controller number contained in the
rcNetwork file. The “num” field in the header contains an 8 bit event counter used to
synchronize event fragments. For details of the format of these banks, see Appendix E,
CEBAF Common Event Format.

Using FASTBUS (the FSCC)

The FSCC has 4 front panel trigger inputs plus a front panel strobe input; these are dif-
ferential TTL inputs, and therefore can not be driven directly by the Trigger Supervi-
sor’s trigger cables. Instead, the trigger cable connects to a small I/O card on the back of
the FSCC, and a short cable connects from there to the front panel (the user must make
this modification on the FSCC to enable use with the trigger supervisor).

If it is desired to run the FSCC without the Trigger Supervisor and I/O card, connect the
trigger strobe to pins 11 & 12 (differential TTL), and connect the trigger type bits to

pins 13-20. If only the trigger strobe is connected, readout list 1(i.e. trigger type 1) will
be executed for all events. ROC trigger acknowledge (busy reset) is output on pins 1-2.

Using CAMAC

CODA currently supports one or more CAMAC crates with Kinetic Systems 3922 crate
controllers interfaced to a VME crate with a 2917 VME-KBUS interface. The KBUS
cable is connected at one end to the 2917, and is daisy chained to all the 3922’s. Each
3922 must be set to a different crate number, and the VME interface must have its VME
address set to 0xFFOO (factory default). All crates connected in this way will appear on

3.34

34

The Event Builder

CAMAC “branch” 0. The VME crate should have the CPU board in slot 1 (left most)
and the 2917 in slot 2 (or a higher numbered slot if all intervening slots pass IACK. This
is required if the 2917 is operated in interrupt mode).

In addition to the VME interface to CAMAC, CODA 1.4 supports the CES VCC2117
ethernet smart CAMAC crate controller. This board will allow small systems to be con-
structed consisting of only a CAMAC crate and a workstation, separated by an arbi-
trarily long ethernet network. There is, however, no Trigger Supervisor interface to this
configuration. In principle, any other interfaces for which the CAMAC standard rou-
tines are available would also work.

To run a CAMAC crate without the Trigger Supervisor, simply include CAMAC
instructions in a “prestart” list to enable LAM’s on one module in one of the CAMAC
crates. Arrange signals to that module will produce a LAM on every event; the readout
controller is programmed to automatically execute readout list 1 on a LAM interrupt.
Support for multiple LAM’s is under consideration.

Using VME

CODA 1.4 supports use of any 68K based VME CPUs running VxWorks 5.1 (such as
the Motorola MV 162 and MV 167 boards). Kernels provided with these specific boards
support A16/D16, A24/D24, A24/D32, and A32/D32 addressing on the VME bus. At
this time there is minimal readout language support for addressing modules (except for
specific modules such as the 2917 CAMAC interface), hence, the user is left to use
imbedded C code in his readout list to address their specific modules. See Appendix C
for a description on how to do this.

The Event Builder

The event builder is implemented as routines which are capable of accepting event frag-
ments via IP sockets from multiple ROC’s. Like other components in the data acquisi-
tion system, it is defined to Run Control through the rcNetwork file (section 3.1.1 on
page 3-2). There must be an EB entry in this file that matches an ANA entry. (RunCon-
trol no longer explicitly creates one.)

Currently, the event builder and analyzer must be a linked single process on the same
machine. This restriction will be relaxed in future releases of CODA allowing multiple
analyzers on different CPUs to be utilized.

Once started, the event builder waits for connection requests from readout controllers
and the analysis program. As event fragments arrive from the ROC’s, internal fragment
numbers are checked for consistency. Fragments are then merged into a single data
structure in the event format described in Appendices E and F. (Each fragment is con-
tained in a separate bank, and the event builder creates an additional bank to contain
standard event information such as the event number.)

Events are built as long as data fragments are pending or until a high water mark in the
event builder is exceeded. Then, events are passed to the analysis program, which may
optionally inquire how many events are pending for analysis (via a trailer word attached
to the event).

In addition to the above task, the event builder provides a number of other services
available via its remote procedure call (RPC) interface:

CODA User’s Manual 3-13

3.5

Using CODA

* get a copy of an event (with selection criteria)
* push an event into the event stream (User/EPICS events)

¢ get status information (number of events built, etc.)

The first of these services can be used by the event dump utility to examine events prior
to analysis. The second service is useful to injecting miscellaneous information into the
data stream, either to control the analysis program or change calibration constants, or
simply for archiving.

Running an Analysis Program

3.6

The analysis program is part of the data acquisition pipeline, receiving events from the
event builder and (optionally) writing events to an output file.

The analysis program is started automatically when the “download” command is issued
in Run Control. It performs whatever initialization it requires, opens the connections to
the event builder and the event output, and then reads an event from the input connec-
tion.

Alternatively, the analysis program may declare itself to CODA as an analysis program,
and then pass flow control to a CODA library routine. This routine calls user supplied
subroutines each time an event is received from the event builder, and handles a few
other tasks such as opening the output data file as specified in the user’s .config file. See
the Run Control Communications library in Chapter 4 for additional details.

The first event obtained will be a “prestart” event followed by a “go” event. (See
Appendix F for the definitions of these events.) The “prestart” event will contain the run
number and run type number, which the analysis program may use to finish any neces-
sary initialization. After the “go” event will be 0 or more data events interspersed with O
or more “pause” and “go” event pairs, and finally an “end” event.

Other types of events may also appear in the data stream if another program is in use
which pushes events into the event builder.

The analysis program is allowed to read and write any files it requires. Summary infor-
mation may be written in any form -- this is left completely up to the implementer. If
histograms are desired, it is recommended that the CERN HBOOK routines be used, as
it permits the histograms to be viewed in real time by PAW (Physics Analysis Worksta-
tion, a CERN program, ULTRIX only).

In order to simplify compiling and linking an analysis program, a script has been pro-
vided which automatically links to the CODA libraries and the CERN libraries. This
script (located in $CODA/bin) may be used directly, or may be copied and customized
as needed:

codaf77 [compiler-options] <filename>.f

Using the Event Recorder

3-14 CODA User’s Manual

While the analysis program may write its events directly to disk or tape, it may also
choose to write events to the Event Recorder process. This process accepts events from
the analysis program and copies them to a file specified in the <runType>.config file. If

3.7

The Event Dump Utility

this file name contains the string “<runNumber>”, it is replaced by the current run num-
ber (decimal).

Like the Event Builder, the Event Recorder has a remote procedure call interface which
allows the following operations:

* get a copy of an event (with selection criteria)
¢ push an event into the event stream

¢ get status information (number of events written, etc.)

Thus it is possible to spy on events at all stages in the data acquisition / analysis pipe-
line. The utilities cefdump and xcefdmp (see below and Chapter 5) are available for this
purpose.

NOTE: The Event Recorder is currently not implemented in CODA 1.4

The Event Dump Utility

The event dump utility (cefdmp) can display, in a readable ASCII format, events from
the following sources:

* cvent file
* readout controller (fragment)
¢ event builder

¢ analysis output

command format

% cefdmp [filename] [-0 objectname] [-t tag] [-u uniquetag]
[-s start] [-e end] [-d dictionary] [-x]

(To check for list of currently available options, type cefdmp with no arguments).

options
X hex dump for integers (default is decimal)
o specify name of CODA object from which to get events / fragments
t select specified tag number or name (full path in event)
select specified unique tag, independent of location in event
specify dictionary for obtaining tag names and titles
S number of first record in file to dump
e number of last record in file to dump
example

% cefdmp myfile.dat -t physics.drift

This command reads physics events from the file and dumps the drift chamber portion.
See Chapter 5 for more examples and details.

An X-windows version of this program also exists, started via the command xcefdmp.

Options are specified by menus, and the data structure is presented graphically. (See fig-
ure below)

CODA User’s Manual 3-15

Using CODA

FIGURE 1.3 Xcefdmp window
XCBﬁ‘n'WP Data Source Dictionary Vi Qptions Help

Dala Source: | stusersfabbottd/CODA/Rdc od

EviD =
EvTypel <V_|
ROC_a|l— x|

Dictionary: Iifusrf\uca\fcudaﬂ AHP_Uxfexal

Tag Name; I

Event MNumber: |§372

372
I I |
Event Mumber Slide

| ~ DecimalDump Hex Dump |

|" Enable Dictionary ~ Disable Dictionany |

Spy Event

Wiew MNext | View Previous |

| it |
as a dictionary. o
Info —= Mumber of events: 1563 J
7]

3-16 CODA User’s Manual

CHAPTER 4
4

Callable Routines

The capabilities of CODA may be expanded by writing applications which interface
with existing CODA routines and programs, often via remote procedure calls. Library
routines are available which hide most of the details of these remote calls; these routines
and other callable routines are described in the following sections. As an aid to develop-
ers of analysis programs, a small subset of the HBOOK histogramming routines are also
documented here (all HBOOK routines are available through the CERN library).

Similar routines are grouped together in alphabetical order. Routines are available for:

CAMACT/O

FASTBUS I/O

Console Log Routines

Error Messages

Event I/O

Histogramming (abstracted from CERN HBOOK manual)
Run Control communications

Spying: Communications with Data Acquisition Components

These routines may be called from C or Fortran. Most of the routines (except the
CAMAC and HBOOK routines) return as function values a success or error code.

CODA User’s Manual 4-1

4-2 CODA User’s Manual

Callable Routines

CAMAC I/O Library

An implementation of the CAMAC standard routines (IEEE-758 1979) has been pro-
vided both for writers of readout lists, and for applications running on the host worksta-
tions. For host based applications, these routines use a remote procedure call (RPC)
interface to a dedicated server (caSrvr) running on the CPU to which the CAMAC crate
is attached (generally a VME or CAMAC single board computer running VxWorks).
The current RPC implementation does not support connecting a user routine to a LAM
interrupt.

The RPC library is a level B implementation (single actions). The local implementation
(C only) includes 10 additional block I/O routines and multiple action routines, corre-
sponding to a level C implementation without the execute-on-LAM feature, and with
high address limits ignored in the address scan routines (scans to the end of the crate, or
until the requested count is satisfied). The RPC interface for these block I/O routines
will be added in a later release. Typical applications for the CAMAC library include
CAMAC diagnostic programs, and programs ported from other IEEE-758 compliant
systems.

Fortran calling conventions conform to the Fortran implementation standard for IEEE-
758. Two additional functions are added, including caopen, which is used to establish
the connection with the server. There is no IEEE standard C binding, so the C interface
is modelled after the Fortran interface, with read-only parameters passed by value.

Standard Functions

¢ cdreg() Define a register

¢ cfsa() Execute a single function (32bit data)
e cssa() Execute a single function (16bit data)
¢ cccz() Crate initialize

* ccce() Crate clear

¢ ccci() Control crate inhibit

e ctci() Test crate inhibit

e cced() Control crate demand

e cted() Test crate demand

e ctgl() Test graded lam

¢ cdlam() Define lam

¢ cclm() Control lam

¢ ccle() Clear lam

¢ ctlm() Test lam

Standard Block Functions (local only)

e cfga() General multiple action

¢ cfmad() Address scan

e cfubc() Controller synchronized block transfer
e cfubl() LAM synchronized block transfer

e cfubr() Repeat mode block transfer

CAMAC I/0 Library

* csga() 16 bit general multiple action

* csmad() 16 bit address scan

* csubc() 16 bit controller synchronized block transfer
* csubl() 16 bit LAM synchronized block transfer

e csubr() 16 bit repeat mode block transfer

Extended Functions
* caopen() Establish connection to hardware
e ctstat() Test status

C interface

#include “ca.h”

void cdreg(int *ext,int b,int c,int n,int a);
void cfsa(int f,int ext,int *data,int *q);
void cssa(int f,int ext,short *data,int *q);
void cccz(int ext);

void cccc(int ext);

void ccci(int ext,int logic);

void ctci(int ext,int *logic);

void cccd(int ext,int logic);

void ctcd(int ext,int *logic);

void ctgl(int ext,int *logic);

void cdlam(int *lam,int b,int c,int n,int a,int *inta);
void cclm(int lam,int logic);

void ctlm(int lam,int *logic);

void cfga(int fa[],int exta[],int intc[],int ga[],int cb[]);
void cfmad(int f,int extb[],int intc[],int cb[]);

void cfubc(int f,int ext,int intc[],int cb[]);

void cfubl(int f,int ext,int intc[],int cb[]);

void cfubr(int f,int ext,int intc[],int cb[]);

void csga(int fa[],int exta[],int intc[],int ga[],int cb[]1);
void csmad(int f,int extb[],int intt[],int cb[]);

void csubc(int f,int ext,int intt[],int cb[]);

void csubl(int f,int ext,int intt[],int cb[1]);

void csubr(int f,int ext,int intt[],int cb[]);

void caopen(char *server,int *success);

void ctstat(int *istat);

Fortran interface
integer*4 ext,b,c,n,a,f,data,q
integer*4 logic,lam,inta[2],success,istat
character*20 server ! length unimportant

call cdreg(ext,b,c,n,a)
call cfsa(f,ext,data,q)
call cccz(ext)
call cccc(ext)

CODA User’s Manual 4-3

Callable Routines

call ccci(ext,logic
call ctci(ext,logic
call cccd(ext,logic

_~ — ~ ~—

call ctcd(ext,logic
call ctgl(ext,logic)

call cdlam(lam,b,c,n,a,inta)
call cclm(lam,logic)

call cclc(lam)

call ctlm(lam,logic)

call caopen(server,success)
call ctstat(istat)

Arguments
server = (character) IP name or IP number of the server machine
success = (returned) 0 if failure, 1 if success
ext = external representation of an address given by b,c,n,a
b = branch number (must be 0)
¢ = crate number
n = slot number
a = address in slot
inta = additional lam definition information (ignored)
f = function code
data = data to read or write
q = status of q line at the end of specific operation

istat= state of the q and x lines at the end of this operation

0 = normal

1=n0Q

2=noX

3=n0Q &noX
logic = logical state

0 = reset

1 =set

fa = array of function codes

exta = array of external addresses

intc = array of integers

ga = array of g responses

cb = control block; cb[0] = requested count; cb[1] returns actual count
extb = array of external address; extb[0] = starting; extb[1] ignored

intt = array of truncated (16 bit) data words

Description

The CAMAC standard routines are described in IEEE Std 758-1979 appendix D: IEEE
Standard Subroutines for CAMAC. Most operations involve defining an external address
to operate upon followed by operating on that address. For example, to read register O of

4-4 CODA User’s Manual

CAMAC I/0 Library

slot 3 of crate 1 branch 0, it is necessary to call cdreg to obtain the external address of
the b-c-n-a quadruplet, and then call cfsa with that address, specifying the function code
(typically 0). Once an address has been defined, it can be used multiple times.

Example 1
integer*4 ext,data,q,status
call caopen(“myserver”,status)
call cdreg(ext,0,1,3,0) ! point to register
call cfsa(0,ext,data,q)
if (g.ne.0) type *, “bad q at cnaf=1,3,0,0:",qg
call cfsa(l6,ext,1234,q) ! write 1234 to register
call cfsa(0,ext,data,q)
if (data.ne.1234) then
type *, *“bad compare: wrote 1234, read”,data

endif

Example 2

! (CAMAC readout list example using crate scan)
int ext, cb[2];

cdreg(&ext,0,1,12,0); /* start scan at slot 12 */
cb[0] = 100; /* limit to 100 words */
cfmad(0,ext,DATAPTR,cb); /* output goes to CODA buffer */
DATAPTR += cb[1l]; /* bump CODA output pointer */

]

! OR use 16 bit transfers:
csmad(0,ext,DATAPTR16,cb);
DATAPTR16 += cb[1];

CODA User’s Manual 4-5

Callable Routines

FASTBUS I/O Library

An partial implementation of the FASTBUS standard routines (IEEE-1177 1989) has
been provided for the FSCC and the VxWorks kernel. These routines may be called in a
readout list, in a seperate loadable user routine, or directly from the VxWorks shell on
the FSCC. They reside in the fastbus library (SCODA/VXWORKS68Kxx/1ib/libfb.o)
which must be downloaded to the FSCC (this can be done in a VxWorks startup script).

Standard Functions

e fparb(); arbitrate for mastership

e fpad(); address module in data space

* fpac(); address module in control space
¢ fpsaw(); secondary address write

¢ fpsar(); secondary address read

e fpr(); single word read

e fpw(); single word write

¢ fparel(); address release

e fprel(); address and bus release

Standard Block Functions
¢ fprb(); block read
¢ fpwb(); block write

Additional Routines
e fb_init_1() FSCC Initialization

C interface

#include “fb_fscc_macro.h”

#include “fb_types.h”

#include “fb_status_macros.h”

#define IFERROR(str,pa,sa)

if (fb_errno!=FB_ERR_NORMAL)

printf (FB_ERRTXT[FB_GET ERROR VALUE(fb_errno)],
fb errno,str,NULL,pa,sa);

void fb_init_1();
int fparb();

int fpad(int pa);
int fpac(int pa);
int fpsaw(int sa);
int fpsar();

int fpr();

int fpw(int data);
int fprb();

int fpwb(int *data,int len);
int fparel();

4-6 CODA User’s Manual

FASTBUS 1/0 Library

int fprel();

Arguments
pa= primary address (slot number or logical address)
sa= secondary address (for either CSR or DATA registers)
data = value or pointer to an array of values
len = number of data values to write

fb_errno = contains fastbus error number after each routine call

Description

These routine are primarily ment for convienience in accessing the FASTBUS port on
the FSCC. They are particularly useful for identifing modules with problems in the crate
or for debugging a “hung” DAQ system. In the example below from the the VxWorks
shell the FSCC is initalized and a module in slot 16 is addressed (in Control space),
cleared (write of 0x40000000), and its module ID (ID = 0x104f0000) read out. Finally,
the address lock and bus are released (fprel() returns fb_errno = 0x800bc119 which is
normal completion of a fastbus operation).

Example
->
-> fb init 1
value = 3140068 = 0x2fe9e4
-> fparb
value = 0 = 0x0
-> fpac(16)
value = 0 = 0x0
-> fpw(0x40000000)
value = 0 = 0x0

-> fpr

value = 273612800 = 0x104£0000
-> fprel

value = -2146713319 = 0x800bcll19
->

CODA User’s Manual 4-7

4-8 CODA User’s Manual

Callable Routines

Console Logger

The following 2 routines allow messages to be sent to the console log process, which
displays them in an X-window display as well as copying them to a log file.

Routines
daLogOpen() Open a connection to the logger
daLogMsg() Write a string to the logger

C Interface
void daLogOpen(char *host,char *pname,int pnum);

void daLogMsg(char *format,argl,arg2,...);

Fortran Interface
character*20 host, pname, line
integer pnum
call dalogopen(host,pname,pnum)

call dalogmsg(line)

Arguments
host = name of the machine on which the console task is running

pname = label to prepend to all messages from this process

Description

daLogOpen establishes a remote procedure call link to the console log task running on
the machine specified by host. The arguments prname and pnum (normally the compo-
nent name and number) are saved and prepended to any messages later sent by daL-
ogMsg.

The C interface to dalLogMsg behaves like the printf routine, and in fact the arguments
are passed directly to sprintf to create the string to be sent to the logger.

The Fortran interface does not handle variable argument lists, and so only a single char-
acter variable may be passed (use internal writes to format a line prior to calling dal-
ogMsg).

daLogOpen is called automatically by the rcService routine, so analysis programs using

this routine may call daLogMsg without first calling daLogOpen. In this case, pname is
set to the name of the analysis component, as found in the rcNetwork file.

Example

status = myfunction(argl,arg2)

if (status.ne.l) call daLogMsg(“error in my function”)

Error Message Library

Error Message Library

Many of the packages in CODA return a status value which indicates success or failure,
and if not successful, it indicates what the problem was. C header files exist for testing
for specific error returns from each package or facility. Generally, though, it is sufficient
to note that an operation failed, and to report the error to the user. The routines in this
library can either print the error message corresponding to the error code, or return the
character string to the user for further formatting.

Functions
¢ ceMsg() Retrieve the CODA error message
¢ cePmsg() Print the CODA error message

C interface
#include <cemsg.h> /* prototypes & defines */
char *ceMsg(int code,int flag,char *string,int strlen);
void cePmsg(char *prefix,int code);

Fortran interface
integer*4 code, flag
character*80 string
character*20 prefix

call cemsg(code,flag,string)
call cepmsg(prefix,code)

Arguments
code = integer status returned by CODA routine
flag = option specifying which part of the error message to extract

CEMSG_ALL =0 =all
CEMSG_NAME = 1 = error code name
CEMSG_MSG = 2 = message string
CEMSG_SEV = 3 = severity
CEMSG_FAC =4 = facility name generating the error
CEMSG_CODE = 5 = error code minus severity and facility

string = character variable to hold requested text

prefix = character string to print before the error text, if any

Description
Error codes are 32 bit numbers in which the high 2 bits indicate severity as follows:

0 = informational
1 = warning

2 = error

3 = fatal

CODA User’s Manual 4-9

Callable Routines

In this way, negative numbers indicate errors since the most significant bit is set. (The
normal return for all routines is zero.) The next 14 most significant bits are used to
encode a facility number. The low 16 bits encode an error number for that facility:

30 29 16 15 0

sev facility code

Status message names are of the form S_FAC_BRIEFERRMSG, where FAC is an
abbreviation for the facility to which the status message belongs, and BRIEFERRMSG
is a short name of the error message. The codes S_SUCCESS =0 and S_FAILURE = -1
are shared by all facilities.

When using these routines, an object module containing a table of all known error codes
and the corresponding status message names and strings is automatically linked into the
application (if new error codes are defined, the application will need to be re-linked to
recognize them).

The routine ceMsg() may be used to extract information from this table. If only the
severity is requested, one character strings are returned (I, W, E, or F). If all is requested,
a string of the following form is returned:

Error: S_SC_BADVALTYP Bad value type specified
(If the high bits were 01, then the message would start “Warning:’, etc.).

The routine cePmsg prints an error message in the same format as above, prefixed by the
string specified as the first argument in the call.

C example
The following examples makes use of the fact that the ceMsg routines returns a pointer
to the requested error message string:

#include <cemsg.h>

int status;

status = scWriteInt(name,val);
if (status!=S_SUCCESS)
printf(“failed to write %s: %s\n”,name,
ceMsg(status,CEMSG_MSG,NULL,0));

if (status) cePmsg(“error in xyz”,status);

Fortran example
The following example prints an error message for each call that returns an error or fatal
error, but not for warnings:

integer*4 status,scwriteint

status = scwriteint(name,1234)

if (status<0) call cepmsg(“error in xyz”,status)

4-10 CODA User’s Manual

Event 1/0 Library

Event I/O Library

Events in the CEBAF common event format can be read from and written to a file on
disk or tape, or from the Event Builder process, or to the Event Recorder process. File I/
O is performed using the C run time library routines open, read, write, and close.

NOTE: CODA 1.4 allows only file I/O.

All logical records are assumed to be in the CEBAF bank format (see Appendix E). In
this format, the first longword of each event is a longword count of the number of words
to follow. The routines below do not attempt to validate a record either on input or out-
put except for reads from a file, which will verify that each logical record’s starting
point is consistent with information in the block header.

Functions

* evOpen() open a file or live event stream
¢ evRead() read a logical record (event)

* evWrite() write a logical record (event)

¢ evClose() close a file or stream

¢ evloctl() control file or stream

C Interface
#include “evfile_msg.h”
evOpen(char *filename,char *flags,int *handle);
evRead (int handle,int *buffer,int buflen);
evWrite(int handle,int *buffer);
evClose(int handle);

evIoctl(int handle,char *request,void *argp)

Fortran Interface

integer*4 status

integer*4 evOpen,evRead,evWrite,evClose,evIoctl
character*32 filename

character*1l flags, request

integer*4 handle, buffer(8192), buflen, argp
data buflen /8192/

status

evOpen(filename, flags,handle)
status = evRead(handle,buffer,buflen)
status = evWrite(handle,buffer)

status = evClose(handle)

status = evIoctl(handle,request,argp)

CODA User’s Manual 4-11

4-12 CODA User’s Manual

Callable Routines

Arguments
filename = name of file to open

flags = 1 character indicating read (R) or write (W). Opening an existing file for
write first truncates the file. Opening a non-existent file for read results
in an error.

handle = variable to hold a pointer to the open file

buffer = buffer into which an event is read (evRead) or from which an event is
written(evWrite). The first word of the buffer will/should contain the
event length in longwords excluding the length word. On a read if the
event is longer than the buffer length, only buflen words are written to
the buffer, and an error is returned.

buflen = length of caller’s buffer in longwords
request = 1/O request option:
“B” or “b”: change the blocksize of physical records

argp = value for I/O request

Description

EvOpen is implemented as a call to the C fopen routine. By default it creates a new file
with a blocksize of 8K longwords (this can and should be extended if large event files
will be generated at high data rates). Each routine returns success or error as the func-
tion value. In some cases, errors are returned from the underlying I/O system (i.e.from
errno). The error message as a string can be obtained via a call to ceMsg (see Error Mes-
sage Library on page 4-9).

Each call to evRead copies the next event from the file referenced by the handle argu-
ment into the caller’s buffer. The first element of the array will receive the event length;
if this is less than buflen then array contains the entire event, otherwise as much of the
event as will fit is copied into buffer and a warning is returned.

Each call to evWrite copies an event from buffer to the file referenced by handle, auto-
matically buffering the events into physical records, with events allowed to span
records.

When evClose is called, any partial physical record is flushed to output, and the file is
closed.

The default blocksize can be changed by a call to evloctl. The call must be made imme-
diately after opening a new file for write access (i.e. in the online analyzer the call
should be made in the users “prestart” routine). In Fortran, the call would be

status = evioctl(handle,”b”,16384)

Example
The following C code fragment copies the first 1000 events from one file into a second
file, and forces the new file to have a blocksize of 1024 longwords.

int blocksize = 1024;

if (evOpen(“input”,”r”,&handle)==S SUCCESS) {
if (evOpen(“output”,”w”,&handle2)==S SUCCESS) {
evIoctl(handle2,”b”,&blocksize);
for (i=0;i<1000;i++) {

Event 1/0 Library

if (evRead(handle,buffer,buflen)!=S SUCCESS) break;
if (evWrite(handle2,buffer)!=S SUCCESS) break;

}
evClose(handle2);

}

evClose(handle);

}

Using variations on this code, simple utilities for extracting events of a particular type or
matching particular criteria may be written.

CODA User’s Manual 4-13

4-14 CODA User’s Manual

Callable Routines

Histogramming

The CERNLIB HBOOK package supports 1 and 2 dimensional histograms, as well as
N-tuples (short arrays of length N treated as N-dimensional scatter plots). This section
documents the most useful HBOOK routines for convenience. For more details and
descriptions of other routines, see the HBOOK User’s Guide.

Subroutines

¢ HLIMIT(nwords)

¢ HLIMAP(nwords,name)

¢ HBOOKI1(id,chtitl,nx,xmi,xma,vmx)

¢ HBOOKZ2(id,chtitl,nx,xmi,xma,ny,ymi,yma,vmx)
* HBOOKN(id,chtitl,ndim,chrzpa,nprime,tags)
¢ HFILL(id,x,y,weight)

¢ HFN(id,array)

* HRESET(id,chtitl)

¢ HRFILE(lun,chtop,chopt)

* HROUT(d,icycle,chopt)

* HREND(chtop)

Arguments
The above routines are written in Fortran, and must follow fortran calling conventions.
(To call from c, append an underscore to the end of the name, and for each character
variable append an additional argument which is the length of the string, by value.)
nwords = number of words in COMMON /PAWM/ array(nwords)
name = name of the shared memory in which to place the histograms
id = histogram number
chtitl = histogram title
nx = number of channels in 1st dimension
xmi = minimum x value to histogram
Xxma = maximum X value to histogram
vmx = upper limit on single channel content (dictates underlying data type)
ny = number of channels in 2nd dimension of 2d histogram
ymi = minimum y value to histogram
yma = maximum y value to histogram
ndim = number of dimensions in N-tuple

chrzpa = memory / disk allocation control: if blank '', then arrays of length
nprime will be allocated and filled, continuing until the HBOOK com-
mon area is exhausted; if chrzpa contains the name of a directory as
given by argument chtop to HRFILE, then a single array of length
nprime will be allocated, and copied to the RZ file each time it is full

nprime = size of primary allocation for an N-tuple

tags = array of character strings giving the names of each element of the N-
tuple

Histogramming

x = X value to histogram
y = y value to histogram for 2d histogram (ignored for 1d)
weight = value to add to channel contents referenced by X,y
array = array containing one N-tuple to append to the set of N-tuples

lun = logical unit number of an RZ direct access file (must be opened external
to the HBOOK routines)

chtop = character string name of the RZ directory to use for I/O

chopt = character string containing options; for HRFILE, the default (*) is to
open an existing disk file, ‘N’ creates a new file, and ‘U’ updates an
existing file; for HROUT, must be © ¢

icycle = (returned) version number of histogram on disk

Description

The routine HLIMIT is used to set the number of words in the Fortran common block
/PAWC/ that may be used by HBOOK for working storage. The argument to this routine
must not exceed the declared value.

The routine HLIMAP replaces HLIMIT, and places the histograms into a shared mem-
ory whose name (4 characters) is given by the second argument. PAW can access this
shared memory by the command “global <name>".

HBOOKT1, HBOOK?2, and HBOOKN are used to create new histograms/n-tuples which
are later referenced by their number.

HFILL and HFN are used to insert data into the referenced histogram.
HRESET zeros the channel counts (or n-tuple count), and optionally changes the title.

HRFILE establishes a temporary unique correspondence between the logical unit LUN
of a previously opened direct access file and the RZ top directory name contained in

CHTORP. If several direct access files are opened by HRFILE, they are identified by the
top directory only. After the call, the current RZ directory is set to the name in CHTOP.

HROUT writes one or more histograms to the current RZ directory on the direct access
file. Using id=0 writes all histograms from the current directory in memory to the cur-
rent directory on disk.

HREND removes the association between the RZ directory name and the direct access
file. The file remains open.

Using the direct access routines above requires an open statement of the form

open(unit=lun,file='myfile.dat’, form='UNFORMATTED’,
access='DIRECT’,status='UNKNOWN',6 recl=XXX)

where XXX is 1024 for VAX/VMS and 4096 for most other machines.

Integration with PAW

In order to view “live” histograms with the PAW utility from CERN, initialize the
HBOOK package with a call to HLIMAP, followed by calls to HBOOKI1 or 2, followed
by calls to HFILL:

parameter nwpaw=100000
common /pawc/ipacw(nwpaw)

CODA User’s Manual 4-15

Callable Routines

call hlimap(nwpaw, 'CLAS’)
call hbookl(1l,’'specl’,100,-3.,3.,0.)
call hbookl(1l, ’'spec2’,100,-3.,-3.,0.)

call hfill(1l,x1,0.,1.)
call hfill(2,x2,0.,1.)

Then, inside PAW, connect to the shared memory using the same name as in the call to
hlimap (arbitrary 4 character name):

PAW > global clas
PAW > cd //clas
PAW > hi/pl 1

4-16 CODA User’s Manual

Run Control Communications

Run Control
Communications

The following routines facilitate building a program to serve as a component in a
CODA data acquisition system. They may be used to build an analysis program, a user
trigger component, or a general user component.

Functions
rcService() Start specified service
rcExecute() Execute the service(s)

C Interface
#include “services.h”
void rcService(void *service name);

void rcExecute();

C Callbacks

int usrDownload_ (char *config);

int usrPrestart_(int *run_num,int *run_type);
int usrGo_();

int usrPause ();

int usrEnd _();

int usrDump_();

int usrEvent (int *buffer,int *buflen,int *flag);

Fortran Interface
external service_nane
call rcService(servi ce_nane)

call rcExecute()

Fortran Callbacks

integer function usrDownload(config)

character *(*) config

integer function usrPrestart(run_num,run_ type)

integer*4 run num,run_type

integer function usrGo()
integer function usrPause()
integer function usrEnd()

integer function usrDump()
integer function usrEvent(buffer,bufmax,flag)
integer*4 buffer(buflen), buflen

integer*4 flag

CODA User’s Manual 4-17

4-18 CODA User’s Manual

Callable Routines

Arguments
config = variable containing the configuration string (minus output filename)
run_num = run number of this run
run_type = run type number, from rcRunTypes

buffer = buffer containing 1 event, in CODA event format (first word is exclu-
sive length of the event)

bufmax = declared / allocated length of buffer. Generally greater than the length of
the event, and gives the maximum size of an output event for analysis
programs which expand the event.

flag = flag to indicate whether to write the event to output or not. Set to 0 to
reject (filter) the event. Set to 1 to cause event to be output. Value is 1 on
entry, so that events by default are recorded if an output file is opened.

Description

The routine rcService declares a remote procedure call service to the network; i.e., it
announces itself to the Run Control program or any other CODA utility as being an
event builder and/or an analysis program. The allowed service names are:

RC_SERVICE EB
RC_SERVICE_ANA

After declaring the desired service(s) (typically both), the program calls rcExecute to
begin processing commands and events. If rcExecute is successful, it never returns; it
waits for messages from Run Control or other utilities.

For each change of state received from Run Control, a user change of state callback rou-
tine (e.g. usrGo()) is called by rcExecute, passing along any relevant information
received from Run Control. If the user provides these routines they are called; if they are
not provided, null routines are linked in from the library.

If the requested service is RC_SERVICE_ANA, then when the download command is
received, rcExecute opens a link to the Event Builder (if the service RC_SERVICE_EB
was also started, this link is just internal pointers).

Also at download, Run Control passes the configuration string (everything after the
object name) from the users .config file to rcExecute. The first word of this string (up to
the first white space) is interpreted by rcExecute as an output filename. If this word is
uppercase NOLOG, then no output file is used. Any characters after the first word are
passed to the users usrDownload routine as the config argument.

Following any go command, events are read from the Event Builder and the usrEvent
routine is called for each event received which is not a change of state event. If an out-
put file is open, all change of state events and any event for which usrEvent returns flag
not equal to zero is written to the output file (flag is set to 1 prior to the call). The analy-
sis program is free to edit the event, subject to the constraint that the event not grow in
size beyond bufmax longwords.

rcExecute also calls daLogOpen when RunControl first establishes a connection to the
service. The program name and number used in this call are the component name and
number sent by RunControl. If the user desires to log messages from his application to a
separate console log, daLogOpen may be called prior to calling rcExecute.

The usrDump callback is invoked by the CODA utility SCODA/bin/cdumphist, which
was originally used to tell an analysis program to dump its histograms to a file so that

Run Control Communications

they could be read by PAW. This feature is no longer needed when using shared memory
histograms, and the usrDump routine may be removed in a future release.

Example
The following is an excerpt from the program $CODA/examples/ebana.f, which incor-
porates the event builder service into the analysis program:

ULTRIX:

external rc_service_ana
external rc_service_eb

call rcService(rc_service_eb)

call rcService(rc_service_ana)

call rcExecute()

HP-UX:

common /rc_service_ana/rc_service_ana

common /rc_service eb/rc_service eb
call rcService(rc_service_ eb)

call rcService(rc_service_ana)
call rcExecute()

CODA User’s Manual 4-19

4-20 CODA User’s Manual

Callable Routines

Spying: Data Acquisition
RPC Library

Many of the distributed components in CODA have RPC interfaces to control and mon-
itor their operation, and to insert and retrieve events or event fragments. The following
routines are available for building custom applications to interface to CODA.

Functions

¢ daCopyEvent() Copy 1 event or fragment from the named component
¢ daCopyRegister() Register a request for multiple events (connect)

¢ daCopyNext() Copy the next event

¢ daCopyPoll() Copy the next event if one is available

¢ daCopyUnregister() Terminate the connection with the component

¢ dalnsertEvent() Insert 1 event into the event stream

¢ daReadInt() Read the value of a named variable

C Interface
int daCopyEvent(char *component,int type,int array[],int arlen)
int daCopyRegister(char *component,int type);
int daCopyNext(int array[],int arlen);
int daCopyPoll(int array[],int arlen);
int daCopyUnregister(char *component,int type);
int daInsertEvent(char *component,int event[]);
int daReadInt(char *component,char *item,int *value);

Fortran Interface

Arguments
component = null terminated ASCII name of a component found in the rcNetwork file
type = type of event desired, -1 returns any type
array = address of array to receive one event
arlen = maximum length of array in longwords
event = address of an array containing one event in CEBAF event format

item = null terminated ASCII name of the item to be read or modified; see list
below (case insensitive)

value = address of integer to hold the item data

Description

The above routines locate the desired component on the network using information con-
tained in the rcNetwork file in the directory pointed to by the environment variable
RCDATABASE, or in the current directory if RCDATABASE is not defined. If the
rcNetwork file is not located, only the special components “EventBuilder” and “Even-
tRecorder” can be accessed, and only if they are running on the current host.

Spying: Data Acquisition RPC Library

Each call to daReadlnt results in a remote procedure call to the selected component,
passing the item name as the argument. The returned data is copied into value; status is
returned as an integer function value. See the table Supported Items on page 4-21 for a
list of currently supported item names for each type of component.

Each call to daCopyEvent reads a copy of the next event of the specified type via RPC
into the specified array. Up to arlen longwords are copied; if the event is longer, the
remainder is discarded and an error is returned. The first word of the array will contain
the event length (may be greater than arlen).

Each call to dalnsertEvent inserts the data from the array ‘event’ into the data stream.
The data is checked to verify that it is in CEBAF event format. The first word of the
array must contain the event length (i.e. outermost structure must be a bank).

TABLE 4

Supported ltems

Component Class Item Name Description
ROC nevents Number of events seen by this ROC
nlong Number of longwords of data sent by this ROC
(includes outermost bank length words)
EB nevents Number of events seen
nlong Number of longwords of data sent to the
analysis program
nkbytes Number of Kilobytes sent to analyzer rounded
down to an integer value
remkbytes Number of additional bytes over the integer
value nkbytes
rocmask Mask of ROC numbers included in this run
(ROC numbers are from 0-31)
ER nevents Number of events written to output
nlong Number of longwords written to output
nblocks Number of physical records written to output
blocksize Blocksize of physical records

CODA User’s Manual 4-21

Callable Routines

4-22 CODA User’s Manual

CHAPTER 5
5

Utilities

CODA contains a number of useful utilities for controlling and monitoring experimental
apparatus, and for examining event data stored in files. The following utilities are docu-
mented in this chapter:

¢ ccrl CODA readout list interpreter to convert crl to ¢ code

¢ cdumphist Utility for invoking usrDump routine in analysis program
¢ cefdmp Utility to dump events from files or from live processes

¢ cnaf CAMAC /O utility

* coda_activate Script for starting Run Control network components

* codaf77 Script for compiling and linking fortran applications

¢ facmsg Print a coda facility error message

¢ makelist Script for compiling readout lists (calls cerl

* vxmon VxWorks remote system monitor

CODA User’s Manual 5-1

5-2 CODA User’s Manual

Utilities

ccrl

The ccrl utility converts CODA readout list language files (.crl files) into ¢ code which
can then be passed to the GNU 68K cross compilers

Syntax
% ccrl filename.crl [outfile]

Arguments
filename = filename containing readout list code to be converted
outfile = optional output file name (default is filename.c)

Description

ccrl uses lex and yacc to parse the input file and identify keywords for conversion into ¢
code. It generates c code specifically for downloading into coda_roc running on a
VxWorks host. It does not generate stand alone code. The user can, however, imbed his
own ¢ code into his readout list in addition to using the defined readout list language.
For more information on CRL language see Appendix C.

ccrl is used by the CODA utility makelist in generating the downloadable VxWorks
objects used by the ROC.

Example
To take the readout list physics.crl and convert it to ¢ storing it in a temporary file for
viewing (i.e. temp.c).

% ccrl physics.crl temp.c

cdumphist

cdumphist

The cdumphist utility is a simple program to cause an analysis program to execute its
usrDump routine.

Syntax
% cdumphist target

Arguments
target = hostname of the machine running the analysis program

Description

cdumphist makes an RPC call to the daDump routine of the analysis program running
on the specified host. If this program has called rcExecute, the call is passed to that pro-
gram’s usrDump routine.

This utility was written as a simple way to signal an analysis program to write all its his-
tograms to disk for viewing by a display program. It is no longer necessary for that
function since Hbook histograms may be placed in shared memory and viewed live
(Ultrix Only).

CODA User’s Manual 5-3

5-4 CODA User’s Manual

Utilities

cetdmp/xcetdmp

The event dump utility (cefdmp) can display, in a readable ASCII format, events from
the following sources:

¢ event files

¢ readout controllers (fragments)

¢ event builder output

¢ analysis program output

Syntax
% cefdmp [filename] [-0 object] [-t tag] [-u uniquetagq]
[-s start] [-e end] [-d dictionary] [-X]
¢ xcefdmp [same]

Options
o specify the source object name (CODA component name)
t select specified tag number or name (full path in event structure)
u select specified unique tag, independent of location in the event
s number of first record in file to dump
number of last record in file to dump
d specify dictionary for obtaining tag names and titles
X hex dump of integers (default is decimal)

Description
The cefdmp utility can dump selected portions of particular events from either a file on
disk or from special processes which comprise the data acquisition pipeline.

For file dumps, the filename is specified as an argument to cefdmp. One event is
dumped, and then the utility waits for a carriage return before dumping the next event. If
-s nnn is specified, (nnn-1) records are skipped before the dump starts. If -e mmm is
specified, the dump continues without prompting until record mmm. Output is to stan-
dard output, and so in this case can be piped to other programs or re-directed to disk:

% cefdmp myfile -e 20 > dump20.lis

Events are tree structured, and every node and leaf on the tree contains an identifier or
tag. Any node or leaf may be specified either by a path (set of tags) starting at the root of
the tree, or by a tag which only occurs at a single point on the tree. The -u option is used
to specify a unique tag. (Using unique tags when defining event structures makes it eas-
ier to use this utility, but is not required.)

Tags are stored in the event as integers, but may be referenced by names stored in a tag
dictionary (see Appendix E). The name of this dictionary file may be specified with the
-d option, or defaulted to the value of the environment variable EVTAGS, or the file
evTags in the directory pointed to by the environment variable RCDATABASE. The fol-
lowing command dumps the drift chamber portion of physics events (events whose out-
ermost identifier is not physics will be skipped):

cefdmp/xcefdmp

% cefdmp myfile -t physics.drift

Events may alternatively read from processes in the data acquisition pipeline. Currently,
the readout controller (ROC), event builder (EB), and the analysis program (ANA) all
will support this feature, allowing spying on the data stream at the crate level, prior to
analysis, and after analysis. The data source is selected using the -o option followed by
the name of the object as found in the run control database file. Assuming that the envi-
ronment variable RCDATABASE is defined, the following example extracts physics
events after analysis:

$cefdmp -o myana -t physics

CODA User’s Manual 5-5

5-6 CODA User’s Manual

Utilities

cemsg

Error codes from the various facilities within CODA have associated error message
strings which may be printed interactively with the cemsg command.

Syntax

% cemsg errornumber

Description

The program takes its first argument as a decimal (hex if Ox is prepended) status code,
looks it up in a compiled table, and prints the full error message to stdout. If the code is
not found, it prints a message that the code is unknown. (This would happen if the
cemsg utility were out of date, for example).

The output string is in three parts: (1) severity, (2) error name, and (3) error text. The
severity is one of the strings Info, Warning, Error, or Fatal Error. The error name starts
with a leading S_ followed by the short name of the facility causing the error message,
followed by another underscore, followed by an abbreviation of the error. The exception
to this are the two error names S_SUCCESS and S_FAILURE which do not indicate a
facility name.

Example
% cemsg -2140209130
Error: S_DA NOPARAM Parameter does not exist

This error was generated by the DA facility (Data Acquisition). Facility names are as
follows:

CAMAC CAMAC I/O package
DA Data Acquisition / Run Control
EVFILE Event file I/O

EVLIVE Live event I/O (inter-process communications)

cnaf

cnaf

The cnaf utility allows some of the features of the CAMAC 1/O library to be used
interactively. In particular, single functions to a CAMAC register may be performed.

Syntax

% cnaf target [c n a f [data]]

Arguments
target = hostname of the CAMAC server
¢ = crate number
n = slot number
a = address in slot
f = function code

data = data for write functions (16-23)

Description

If all arguments are specified, the operation is performed and the status is printed onto
stdout. Q=0 is a normal successful operation, Q=1 means no Q response, Q=3 means no
Q and no X response. In the following examples, user input is in italics:

¢ cnaf nyvme 1 3 0 16 1234
q:0
¢ cnaf nyvme 1 3 0 0

dec:1234 hex:4d2 q:0

If only the target name is specified, the server is contacted and cnaf reads the c, n, a, f,
and data arguments repetitively from stdin, performing each operation and reporting
return status on stdout. Input is terminated by end of input (control-D).

% cnaf nyvme

cnaf [d]: 130 16 2222
q:0

cnaf[d]: 1300
dec:1234 hex:4d2 q:0
cnaf [d]: "D

%

CODA User’s Manual 5-7

5-8 CODA User’s Manual

Utilities

coda_activate

In order to simplify starting processes which contain Run Control network components,
a script has been provided which invokes rsh on the proper host, as specified in the
rcNetwork file. This command is normally used only in the rcNetwork file.

Syntax

% coda_activate [options]

Options
-1[og] <file> Log filename. Default is none, except for the console logger,
where the default is coda_console.log.
-nol[og] Force no log file.

-plrogram] <p> The program file to activate. This overrides the default which
is derived automatically from the component type.

-flile] <file> Synonym for -program.

-o[ption] <opt> An option to be passed onto the program. Multiple such
options may be specified, each being preceded by -option.

Description:

When used without options, coda_activate activates the default program corresponding
to the component (e.g. ROC, EB) on the node specified in the rcNetwork entry. The
options described above may be used to override the defaults.

Note that the location of any log files will depend on whether the corresponding compo-
nent is activated on the same node as RunControl, or remotely on another node, unless
the log filename is fully specified (e.g. /usr/users/me/ana.log). In the case where the
component is activated on the same node as RunControl, the logfile will be located in
the directory from which RunControl was activated. If the component is activated
remotely, the logfile will be located in the home directory corresponding to the current
account.

Example

The following is a sample rcNetwork file showing the use of this command:
! File:-
! rcNetwork: Network Configuration file.
!

! A Host of $NODE implies the same node as RunControl.

!Name Num Type Host BootScript

ROC1 1 ROC dadev -1 roc.log
MYEB 0 EB myhost $CODA/bin/coda_activate -p ~/test/myebana
MYANA 0 ANA myhost $CODA/bin/coda_activate -p ~/test/myebana

codaf77

codat7/7/

In order to simplify compiling and linking fortran applications with the CODA libraries,
a script has been provided which executes the compiler and links to all CODA libraries
and to the most recent CERN program libraries.

Syntax
% codaf77 [f77_options] [loader_ options] file(s)

Any options may be specified which are valid for the compiler and linker, including
additional object modules, fortran files, and library files.

Description

This script simply invokes 77 on the host, passing all arguments through to the com-
piler, and appending on the CODA libraries and the CERN libraries (packlib and kern-
lib). It may be copied from $CODA/bin and customized as necessary.

Example

The following example compiles a program drift.F which references files included
from the sub-directory include, and links to the library drift.a and the X11 system
library:

¢ codaf77 -I./include -1X11 drift.F drift.a

CODA User’s Manual 5-9

5-10 CODA User’s Manual

Utilities

makelist

makelist is a utility for compiling CODA readout language.

Syntax

% makelist file[.crl] version

The name of the file to be compiled must end with “.crl”.

Description

This script first passes the source through an interpreter (called ccrl) which converts the
readout list into c. Next, the GNU compiler is invoked to compile the c readout list. Cur-
rently, the macro expanded c source is left behind in the file “file.c”.

The version argument specifies the VxWorks version number the file is to be compiled
under. The two currently supported versions are 5.0 and 5.1.

Example
The following example compiles the readout list fastbus.crl to produce the 2 files fast-
bus.c and fastbus.o:

¢ makelist fastbus 5.0

vmon

vmon

The vxmon utility gives access to several of the system monitoring routines of the
VxWorks kernel (operating system used in the VME and FASTBUS system:s).

Syntax

% vmon

(Select a node and a display type from pull down menus.)

Description

This X-windows based utility can display information about all tasks on any of the front
end systems in CODA, both readout controllers and slow controls servers. When vxmon
first starts up it reads the file rcNetwork in the directory pointed to by the environment
variable RCDATABASE to obtain a list of all nodes in the experiment. This list is used
to build a pull down list of nodes (see below).

The menu bar at the top of the window contains 4 buttons: Control, Display, Node, and
Application.

The Control button brings up 2 menu choices: Set Interval and Quit. The Set Interval
menu item brings up a slider to vary the update rate from 0.5 seconds to 10 seconds.

The Display button brings up 4 menu choices: Status, CPU Load, Stack, and None.

¢ The Status display shows, among other things, the priority and current status
(READY, PEND, SUSPEND) of each task. Any task in the SUSPEND state is
probably hung -- please submit a problem report.

¢ The CPU Load display shows what percent of the CPU time is being consumed by
each task, with one column giving figures since the monitor started and the other
giving figures from the last second of operation. The last few lines of this display
also show time spent in the kernel and executing interrupt code (both data
acquisition and ethernet I/O).

¢ The Stack display shows the stack size of each task, the largest stack the task has
ever used, and the amount of the stack never used (Margin). If a task is ever
observed to have a margin of less than 100 bytes, please submit a problem report.

The Node button brings up a list of known nodes to select for display, as well as an
option for entering a node name in a popup window.

The Applications button brings up 2 choices: Shell and Reboot. The Shell application
creates a terminal window and attempts to log in to the current node (this may require
entering a username and password). This option will not work on systems configured
without a shell task and the rlogin daemon. The Reboot application forces a soft reboot
of the currently selected node (after prompting for verification).

CODA User’s Manual 5-11

5-12 CODA User’s Manual

Utilities

Status Display

NAME

tExcTask
tLogTask
tNetTask
tPortmapd
vxServ
scServ

caServ

_excTask
_logTask
_netTask
_portmapd
_vVxXserv
_main

_main

CPU Load Displa

tExcTask
tLogTask
tNetTask
tPortmapd
vxServ
scServ
caServ
KERNEL
INTERRUPT
IDLE

TOTAL

Stack Display

tExcTask
tLogTask
tNetTask
tPortmapd
vxServ
scServ
caServ

INTERRUPT

_excTask
_logTask
_netTask
_portmapd
_vxserv
_main

_main

_excTask
_logTask
_netTask
_portmapd
_vVxXserv
_main

_main

TID PRI STATUS PC SP ERRNO DELAY
3fccdo 0 PEND lcab8 3fcc3c dooo3
3fb788 0 PEND lcab8 3fb6£0
3f7568 50 READY 4d79%e 3£7500
3f0e64 100 PEND 59ada 3£0d30 16
3be560 100 PEND 59ada 3bed64 36
3df960 150 PEND 59ada 3df844 1c0001
3c0dd0 150 PEND 59ada 3c0cb4 d0oo03
TID PRI total % (ticks) delta % (ticks)
3fccd0 0 0% (2) 0% (2)
3fb788 0 0% (0) 0% (0)
3£7568 50 0% (74838) 0% (408)
3f0e64 100 0% (46) 0% (0)
3be560 100 0% (15465) 1% (3100)
3df960 150 0% (5) 0% (0)
3c0dd0 150 0% (0) 0% (0)
0% (1310) 0% (60)
0% (1500) 0% (44)
98% (8150509) 98% (192662)
98% (8243783) 99% (196326)
TID SIZE CUR HIGH MARGIN
3fccd0 2988 148 652 2336
3fb788 4988 152 220 4768
3f7568 9528 104 736 8792
3f0e64 4528 308 2616 1912
3be560 19212 252 3764 15448
3df960 9208 284 1500 7708
3c0ddo 9208 284 1500 7708
8000 0 312 7688

APPENDIX A
A

Run Control Configuration File Formats

Run Control is configured through 8 files:

¢ rcNetwork -- definitions of each distributed component

¢ rcRunTypes -- definitions of names of types of runs

¢ <runType>.config -- configuration strings for components in this type of run
¢ <runType>.options -- Run Control options for this type of run

¢ rcRunNumber -- file containing the number of the last started run

¢ rcDefaults -- file containing default settings for Run Control (optional)

¢ rcExperiment -- file containing an Experiment name (optional)

¢ rcPriority -- file containing service names and associated priority numbers (optional)

A.1 rcNetwork

The network definition file contains 1 line per distributed component in the following
format:

name number class IP [command]

where “name” is an arbitrary alphanumeric name, “number” is a unique integer number
identifying the named component, “class” is one of the 7 supported classes (see below),
“IP” is an internet hostname or address (e.g. mynode.cebaf.gov or 129.57.99.99), and
“command” is an optional csh command used to start the component if it is not currently
active. An example of such a command is coda_activate, discussed in Chapter 5. Com-
ment lines are those with a leading exclamation mark (!), and are ignored.

TABLE 5

Run Control Classes

Class Name Title Description

TS Trigger Supervisor TS control ROC (optional).

ROC ReadOut Controller Read event fragments from input boards and
forward them to the event builder (one or more).

EB Event Builder Assemble fragments into events (one required).

ANA Analysis Program Analyze events (one required).

ER Event Recorder Write analyzed events to the output file

(optional, at most one).

LOG Console Logger Accept console messages from other
components and optionally display them in a

CODA User’s Manual A-1

A2

Run Control Configuration File Formats

window and/or write them to a log file (one
required).

ucC User Component Arbitrary user component (optional, more than
one allowed).

If the EB and LOG components are not found in rcNetwork, they are automatically
added to the system with a component name the same as the class name, and an IP
address the same as Run Control’s (for the LOG component) or the analysis program
(for the EB component). If the EB is listed in rcNetwork, it must have the same IP
address as the analysis program. A minimal rcNetwork file would look something like:

fastbus 1 ROC 129.57.99.99
crunchEB 1 EB localhost /usr/users/me/myana/a.out
crunchANA 1 ANA localhost /usr/users/me/myana/a.out

This generates a system with one front end crate named fastbus. An event builder
named “crunchEB” on the local host and an analysis program named “crunchANA” are
started by running the file a.out in the specified directory, and a console log running on
the local host will also be started. This system is not using a trigger supervisor, nor does
it include an event recording process (but may write output events from the analysis
program to disk).

It is actually possible to define more than one EB, ANA, ER, or LOG, provided only
one of each is referenced in any <runType>.config file. Multiple Services should be
identified by their name and number

rcRunTypes

A3

The run types file contains a list of run type names and run type numbers. For each run
type, user’s may specify a different set of configuration information. Each line of the file
is either a comment line (leading “!””) or defines a run type with the following format:

name number

where “name” is an alphanumeric string, and “number” is a decimal integer. The run
type name is used to locate configuration information for runs of that type, and the num-
ber is propagated to all components during the download change of state. Example file:

physics 1
calibration 2
test 3

If the rcRunTypes file is missing, Run Control uses a run type of “default”, number 0.

<runType>.config

A-2 CODA User’s Manual

For each entry in rcRunTypes, there is a corresponding “.config” file (e.g. physics.con-
fig). Each line in the file is either a comment line (!) or defines a component to be used
for runs of this type. Format:

name configurationString

where “name” matches a name defined in rcNetwork, and “configurationString” is an
ASCII string whose meaning is specific to each class (see table Configuration String

Usage on page A-3). This string may contain embedded spaces, and is taken to start at
the first non-whitespace after the name and continue to the end of the line or to an excla-
mation mark. It is sent to the component as part of the “download” command.

TABLE 6

A4

Configuration String Usage

Class Name Configuration String Usage

UC, ANA User defined

TS, ROC Name of file containing user’s compiled readout code
EB Ignored

ER name of event output file'

LOG name of console log file, if desired
<runType>.options

Each run type has a run options file with an postfix of “.options” (e.g. physics.options).
This file contains values for various options in the Run Control program. Each non-
comment line has the form:

name value
or in the case of scripts,
transitionName [priority] scriptName

The only non-script option currently supported is “runNumber”, with the following val-
ues and meanings:

increment => increment and save the run number in rcRunNumber (default)

noincrement => fetch the run number from rcRunNumber (file is not changed)
Example:
runNumber increment

For user script execution, the “transitionName” can take on any of the following: down-
load, prestart, go, pause, and end. The script’s execution priority is optional and defaults
to 29 if no value is given. The “scriptName” should include the path specifying its loca-
tion.

Script Examples:

prestart $RCDATABASE/rcScripts/getHVstatus
go 10 $RCDATABASE/rcScripts/getruninfo

If the option file is missing, all options take their default values, and no script compo-
nents are created.

1. This component is not implemented in CODA 1.4

CODA User’s Manual A-3

AS

Run Control Configuration File Formats

rcRunNumber

A.6

This file contains the most recently used run number as a decimal ASCII integer. The
run number is incremented at the start of a run if the option “runNumber” is set to
“increment” (the default). If the rcRunNumber file is missing, it is created when the first
run is started with a run number of 1. The run number can optionally be set to any value
through the options menu in RunControl.

rcDefaults

The rcDefaults file has a format similar to the options file above, in which each line
specifies the name of a variable and its initial value. The following table lists all options,
their default values, and a brief description.

TABLE 7

A7

Name Default Description

buttonFeedback true Determines whether the various buttons on the
Run Control command panels show feedback
describing their actions when the mouse cursor
enters them. The default is true.

online true Determines whether Run Control is online. A
value of false will result in state transitions
being performed without any communication
with the components described in the
rcNetwork file. This is useful for diagnostics.
The default is true.

rpcUpdate true Determines whether updating of variables from
components in the rcNetwork file occurs. The
default is true.

rpctimeout 3 Determines the time in seconds the Run Control
rpc communication will wait for a reply. The rpc
request is issued 3 times. The timeout refers to
a single request.

verboseReporting true Determines how verbose the status messages in
the scrolling status region are. The default is
true (verbose).

rcExperiment

A8

The rcExperiment file contains a single string identifying a name for the Experiment.
This name will be displayed on the RunControl front panel. While the string may be
arbitrarily long, if the user uses a very long string it may be cropped in the RunControl
display.

rcPriority

A-4 CODA User’s Manual

The rcPriority file can optionally be used to either redefine standard class component
execution priorities (NOT encouraged) or define priorities for user components (UC).
The syntax of the file is as follows:

class priority

where “class” can take on the values LOG, ER, ANA, EB, ROC, TS, and UC. The
default priorities for all the standard classes are,

LOG 27
ER 23
ANA 19
EB 15
ROC 11
TS -27

The purpose of priorities in the starting and stopping of runs is to give RunControl a
defined order of communication to all the components. RunControl will not issue transi-
tion requests to one class before all the “higher priority” classes have successfully com-
pleted their transitions. For example, in starting a run RunControl communicates with
the larger number classes first like ANA then EB then ROC and finally TS. However,
when ending the run RunControl reverses the order of communication: TS, ROC, EB,
and then ANA. Hence the TS component is the last to become active but the first to
deactivate.

The user may define priorities for USER_SCRIPT components via the
<runType>.options file. Hence, if he wished to have a script execute during the go tran-
sition after all the classes have activated except TS, then he could define it to be exe-
cuted with a priority level 10.

CODA User’s Manual A-5

Run Control Configuration File Formats

A-6 CODA User’s Manual

APPENDIX B

CODA 1.4 Support for the Trigger
Supervisor

The Trigger Supervisor is configured by a compiled readout list whose name is specified
by an entry in the <runType>.config file (see Appendix A). The coda_ts executable
must be running on the VME CPU in the crate housing the trigger supervisor module
(this just a specialized ROC). TS programming is done the prestart routine and it is
made Live or Not Live in the go, pause and end transitions.

Most necessary programming of the Trigger Supervisor can be done through writing to
4 different registers: the csr, timer, trig, and roc. In addition, there are 4096 memory
locations that can hold ROC codes (accessed by ts_memory[i]) corresponding to all
possible permutations of the 12 trigger input states. For more details on TS program-
ming the user is referred to the CEBAF Trigger Supervisor Users Guide.

Hardware necessary for use of the Trigger Supervisor are the custom built Trigger Inter-
face Cards for both the FSCC as well as for VME, and a 34 pin (17 pair) cable connect-
ing each interface card to the Trigger Supervisor (via daisychain). The user should be
aware that each interface card has a settable ROC number (0-7) which is independent of
the ROC number defined in the CODA rcNetwork file. In the Trigger Supervisor read-
out list below the ROC number referred to in the ts->roc register is the one set on the
interface card.

For example, a CODA readout list file for a system with 2 ROC’s connected on separate
cables (branches), and a Level 1 trigger enabled, might look something like this:

! CODA Readout list for VME control of Trigger Supervisor
! David Abbott, CEBAF 1994

vme readout

TS_ADDR = hex £0ed0000
MEM_ADDR = hex f0ed4000
MASK_01 = hex 0000ffff

begin download

! Define Pointers to TS control registers and Memory
tsmem = (long *)MEM ADDR;
ts = (struct vme_ts *)TS_ADDR;
log inform “Download Executed\n”

end download

begin prestart
variable jj, addr, mem value

log inform “Entering Prestart\n”

CODA User’s Manual B-1

B-2 CODA User’s Manual

CODA 1.4 Support for the Trigger Supervisor

%%
ts->csr = 0x8000; /*reset*/
ts->csr = 0x0200; /*ROC Lock mode on all BRANCHES*/
ts->trig = 0x1FFF;/*Enable Trig inputs in non-strobe mode*/

/* The user should set bits in this register coressponding the
the ROCS that are being communicated with on each trigger */

/* Enable ROC 3 on BRANCH 1 and ROCO on BRANCH 3*/
ts->roc = 0x00010004;

0x05;/* Level 2 Timer */

ts->timer([2] 0x05;/* Level 3 Timer */

ts->timer[3] 375; /* FrontEnd Busy timer 40ns/count */
ts->csr = 0x0080; /* Enable Timer */

ts->timer[1]

/* construct memory data --- in the following model, all

trigger patterns that form the memory address are assigned to
trigger class 1. For those trigger patterns with a single hit,
the ROC code is set to be the trigger input number. Otherwise,
the ROC code is set to O0xE. All LEVEL 1 ACCEPT signals are
asserted for every pattern. */

ts_memory[0] = 0;
/* assign data to all memory addresses */
for(addr=1;addr<=4095;addr++)

ts_memory[addr] = OXFFE3;
/* fix ROC code for single hit patterns */

jj = 0;
for (addr=1;addr<=4095;addr=2*addr)
{

Ji++;

ts_memory[addr] = O0xFF03 + (0x10)*jj;
}

/* load and test memory */
for(addr=0;addr<=4095;addr++)

{
tsmem[addr] = ts_memory[addr];
mem_value = tsmem[addr];
if(ts_memory[addr] != (MASK 01 & mem value))
printf(“***** TS memory error %x %$x\n”,
ts_memory[addr],MASK Ol&mem value);
}

%%
log inform “Prestart Executed\n”

end prestart

begin end
! Disable Triggers
ts->csr = 0x210000;
log inform “End Executed\n”

end end

begin pause
! Disable Triggers
ts->csr = 0x210000;
log inform “Pause Executed\n”

end pause

begin go

log inform “Entering Go\n”
! Enable Triggers

ts->csr = 0x21;

end go

begin trigger
end trigger

begin done
end done

begin status
end status

CODA User’s Manual B-3

CODA 1.4 Support for the Trigger Supervisor

B-4 CODA User’s Manual

APPENDIX C

Readout Controller Configuration File

(Language Summary)

Cl1

This appendix gives a summary of the data acquisition statements used to build readout
lists for the supported FASTBUS and VME/CAMAC ROC’s (readout controllers), and
the format of the file containing these lists. The file is compiled with the makelist utility,
and the name of the compiled file is passed to the ROC by an entry in the <runType>.-

config file (see Appendix A).

File Format

C.2

Each ROC configuration file is composed of 1 or more sections of code to be executed
upon receipt of a corresponding event, either a hardware trigger or a change-of-state
command from Run Control. In addition there may be a section of declarations and/or
definitions at the top of the file, for example to define constants, global variables, and
compiler options. Each section other than the declaration/definition section starts with a
“begin section-name” and ends with “end section-name”:

! comments start with exclamation points

fastbus ! set compiler for fastbus readout
slots = 5 ! constant definition
variable i ! global variable declaration

begin usercode
%%

%%
end usercode

begin prestart

usercode();

! begin section for user specific routine

/*imbed section of code using double % */
/* ¢ comments also allowed anywhere */
! end must have matching name

! hardware initialization

!single line ¢ code requires semicolon

end prestart

Compiler Flags

The first non-comment lines of code select what type of readout hardware is being used,
and whether the readout will be triggered by interrupt or by polling. If polling is to be
used (interrupt is the default), the following must be the first non-comment line:

polling ! (this line is optional)

Next, there must be a line containing just the keyword FASTBUS or CAMAC or VME
to enable support for the corresponding hardware:

camac ! uses camac standard routines
vme ! camac and vme may both be used
fastbus ! FSCC fastbus routines included

CODA User’s Manual C-1

Readout Controller Configuration File

If the fastbus readout option is chosen there are several additional flags which can be set
enabling different options. These are,

Inlines all FB routines for faster
execution

inline fastbus

Turns off error checking. Speeds up
execution, but should be used only
when user is confident that FB
readout is operating properly
Should be used when the FSCC is
being triggered by the Trigger
Supervisor

Redirects data flow through the
FSCC output port into a VME memory
module. (requires correct hardware)

nocheck fastbus

ts control

parallel link

C.3 Code Sections

C-2 CODA User’s Manual

There are 3 types of code sections: readout (trigger) lists, state transition command lists,
and user command lists.

The hardware trigger information is conveyed to the ROC’s on the Trigger Supervisor
ROC cable, and is a 4 bit code (values 0-15). This code is generated via memory lookup
in the Readout Code MLU of the Trigger Supervisor, with the trigger inputs as an
address. When the ROC receives the trigger from the TS a list named “trigger” will be
executed and a local variable called “trig_type” will be set with the value of the trigger
information from the TS (if ts control is not specified then the default value of
trig_type=1). At the end of each trigger, an additional list is executed to re-enable inter-
rupts, clear lams, etc. (interrupts should not be re-enabled in the trigger list). This list is
labelled “done”:

begin trigger
! read data

end trigger
begin done ! (executed at end of event)
! re-enable lam or trigger

end done

In addition to specifying instructions for hardware triggers, the following state transi-
tions may also have ROC instructions associated with them: download, prestart, go,
pause, and end (with identical readout section names: download, etc.):

begin prestart
! initialize hardware

end prestart

Finally the user may define hist own list that may be called (or spawned as a task in
VxWorks) in any of the transition lists. These routines are created as void so no values
may be returned:

begin userCode
! user specific (can be called from

! other lists)

end userCode

C4

List statements may either be English-like readout statements defined in the next sec-
tion, or may be any valid ¢ expressions (the file is first passed to a CODA readout lan-
guage interpreter (ccrl), and then to the ¢ pre-processor and compiler). Individual lines
of ¢ code must end with a semicolon. Large sections of ¢ code may be imbedded by
placing %% prior to and at the end of the code section.

The readout language is designed to be complete enough for most experimenters, and
hides many of the board specific implementation details.

Language Elements

CODA Readout Language (crl) statements include flow control, arithmetic operations,
and hardware I/O statements. Each of the statements recognized by the CODA pre-pro-
cessor begins with a keyword, and may have additional keywords or expressions fol-
lowing.

In the statements that follow, optional elements are shown in [], and alternative choices
are shown in [] separated by .

Variables and Expressions
Four byte integers, with case sensitive names of up to 31 characters, may be declared
either at the top of the file (global variable) or within a section (local variable).

variable xxx,yyy,zzz

Constants may be declared at the top of the file by giving a name followed by an equals
sign followed by a value:

NSLOTS = 6

Expressions may be built up from variables and arithmetic operators: * / + - (). Logical
expressions may use the conventional logical operators < > == |= <= >= or may use
English equivalents:

is less than

is greater than

is equal to

is not equal to

is less than or equal to

is greater than or equal to
Logical expressions may be combined using parentheses and the operators and or:

(xxx is greater than 7) and (yyy is 8)

Arithmetic Statements
Constructs exist for clearing, incrementing, and decrementing a variable, as well as
assigning an expression to a variable:

clear xxx

increment xxx

decrement xXxx

XXX = expression

CODA User’s Manual C-3

C-4 CODA User’s Manual

Readout Controller Configuration File

Flow Control

There are 4 flow control constructs: begin...end, while...end while,
if...else if...else...end if, and select on...case...end select:

begin section-name
statement(s)

end section-name

while logical-expression
statement(s)

break ! alternative way to exit loop
end while

if logical-expression
statement(s)

else if logical-expression
statement(s)

else
statement (s)

end if

The else expressions are optional; there may be as many else if clauses as desired.

select on expression

case constantl
statement(s)

case constant2

statement(s)

default
statement(s)
end select

No explicit break statement is required in a case clause: flow does not fall from one case
into another, but rather terminates at the next case or end statement.

Hardware 1I/O

There are 3 basic hardware operations: read from a hardware module, write to a module,
and write to the output data stream. The read from a module also has a variations that
allows reading into a variable or directly into the output data stream. In addition, there is
a clear crate statement which performs the appropriate operation for that crate.

Output, either explicitly done with the output statement, or implicitly done by a hard-
ware read operation, is assumed to be in units of 4 byte integers. Each time a code sec-
tion is called, it produces a single bank of 4 byte integers. The bank header (including
bank length) is inserted automatically.

Generic 1/0

The crate clear or reset operation performs a CAMAC crate clear or Z or a FASTBUS
reset. The crate number is ignored for FASTBUS, and defaults to 0 for CAMAC.

clear crate [number]

reset crate [number]
The output statement transfers a single integer variable into the output stream:
output yyy

FASTBUS I/O

Reading and writing FASTBUS modules is a 4 step operation: (1) address the module,
(2) select which register in the module to read or write (secondary address), (3) transfer
1 or more words (4 byte) of data, and (4) release the module. Modules have a unique
geographical address (slot number, used most often), and may have one or more logical
addresses (used is special applications). In addition, they have 2 internal address spaces
data and control. Control space is typically where control registers are found for setting
board options, and data space is typically used to read event data.

fastbus

address [geographic] [data] sl ot-nunber
address [geographic] control sl ot-nunber
address logical [data] | addr

address logical control | addr

secondary address saddr

The FASTBUS spec allows for addressing of multiple modules at the same time (called
broadcast addressing). The syntax for this is

broadcast address [geographic] control broadcast_addr

where br oadcast _addr is a module or function specific number. Common examples
would be the All Local Module Address 1 or the Sparse Data Scan 9. Refer to specific
FASTBUS module manuals on support for broadcast addressing.

Once the addressing has been set up, any number of words may be transferred (depend-
ing on the application). The read statement transfers a single word, and the block read
statement transfers a variable length block of data (generally 1 event’s worth of data).

read ! transfer 1 word to output
read into <xxx> ! transfer 1 word to variable
write yyy ! write yyy to current address
block read ! transfer block to output
fast block read ! FSCC specific (faster)

broadcast read into <xxx> ! used after a broadcast address

Finally, after data transfer the module(s) should be released. The two forms for address/
bus release are,

release
broadcast release

CAMACT/O

CAMAC has a different addressing scheme in which a register in a module is addressed
by a combination of branch number (b), crate number (c), slot number (n), internal
address (a), and function code (f). The function code generally distinguishes between
read, write, and control functions, but may also be used to select between group 0 and

CODA User’s Manual C-5

Readout Controller Configuration File

group 1 data space (most modules only support group 0). NOTE: The current imple-
mentation of CODA only supports branch b=0.

camac

read b,c,n,a,f ! transfer 1 word to output
read b,c,n,a,f into <xxx > ! transfer 1 word to variable
write yyy into b,c,n,a,f ! write yyy to module

control b,c,n,a,f ! execute control function
CAMAC only supports a single trigger (currently) through a CAMAC lam:
link trigger lam b,c,n,a

The above statement specifies which lam to poll in polling mode, or which lam to
expect as an interrupt in interrupt mode (default).

VME I/O

There is limited support for addressing and readout of VME modules in crl. Most mod-
ule access must be done through imbedded ¢ code. However, structures for memory
maps of several commonly used modules at CEBAF have been added to aid the user in
addressing these modules (See Table 8). These structures are defined when the user
specifies vme readout at the top of his readout list code. (See the example trigger
supervisor readout list in Appendix B.)

TABLE 8

C-6 CODA User’s Manual

Module Description Structure Pointer
Trigger Supervisor Control registers vme_ts *ts

Memory ts_memory[4096] *tsmem
TS Interface card Control registers vme_tir *tir[2]
Lecroy 1190 Dual ported memory vme_dpm *dpm, *dpml
Lecroy 1151 Scaler vme_scal *vscal[32]

The user should be aware of address modifiers and data transfer modes supported by
their particular slave modules. The default kernel for the MV162 and MV 167 boards
used at CEBAF have 4 address spaces defined:

Al6/D16 Oxffff0000 - Oxffffffff
A24/D16 0xf0000000 - OxfOffffff
A24/D32 0xe0000000 - OxeOffffff
A32/D32 sysMemTop - Oxdfffffff

For example the Lecroy 1190 Memory requires certain registers to read and written to
with single word transfers (A24/D16) while the memory can be read via longword
transfers (A24/D32), hence the definition of two pointers (*dpm, *dpml) which can be
defined using the appropriate address modifiers (0xfOxxxxxx and 0xe0xxxxxx).

C.5

Utility Statements

Arbitrary messages may be sent to the console task, tagged with a severity. This routine
should be used with caution inside event readout lists as they may over run the logger’s
ability to keep up (thereby losing messages and degrading performance). The format of
this call is similar to a c printf statement wherein the message string includes embedded
format descriptors. For each format descriptor, the next unused argument is fetched and
formatted according to the descriptor.

log [inform | warn | alarm] “quoted string”,args,...
For example:
log warn “counter value is %d”,counter

%d converts a decimal integer, %x produces hex output; other formats may be found in
any ¢ manual.

Example File

The following is a listing of the configuration of a readout controller which reads out a
single Lecroy 1881 ADC. Triggering is provided by the Trigger supervisor. In the trig-
ger routine, a broadcast address (Sparse Data Scan) is made to determine if the module
has valid data in its buffer. The fastbus routines will be inlined providing approximately
50% faster execution of the trigger routine.

! Example Fastbus readout code for a single Lecroy 1881 ADC
! FSCC is being triggered by the Trigger Supervisor
! David Abbott, CEBAF 1994

fastbus readout
inline fastbus
ts control

ADCSLOT = 16
SCANMASK = hex 00010000

begin download
log inform “User Download\n”

end download

begin prestart
variable adcid

reset crate 1
! Reset, clear ADC
address geographic control ADCSLOT

write hex 40000000

CODA User’s Manual C-7

Readout Controller Configuration File

release

! Program for no sparsification, Gate from FP
address geographic control ADCSLOT
write hex 00000104
secondary address 1
write hex 00000080
release

! READ ADC ID
address geographic control ADCSLOT
read into adcid
log inform “ADC ID = H8”, adcid
release

log inform “User Prestart Executed\n”
end prestart

begin end
log inform “User End Executed\n”
end end

begin pause
log inform “User Pause Executed\n”
end pause

begin go
log inform “User Go Executed\n”
end go

begin trigger
variable datascan, ii

! loop until ADC is completed buffering

broadcast address geographic control 9
broadcast read into datascan
broadcast release
ii =0
while ((datascan is not equal to SCANMASK) and (ii < 5))
broadcast address geographic control 9
broadcast read into datascan
broadcast release
increment ii
end while

if ii is less than 5 then

! Load next event
address geographic control ADCSLOT
write hex 400

C-8 CODA User’s Manual

release

! Read out ADC
address geographic data ADCSLOT
block read
release
else
! Output my own header into the data stream
output hex da0l00ff
output datascan
end if

end trigger

begin done
end done

CODA User’s Manual C-9

Readout Controller Configuration File

C-10 CODA User’s Manual

APPENDIX D
D

The CODA/EPICS Interface

D.1

With the introduction of EPICS as the slow controls system for the accelerator and
increased interest for using EPICS for physics slow controls, there is in development an
interprocess communication mechanism to allow CODA data acquisition and EPICS
slow controls to interact. This communication will be facilitated by a single, user con-
figurable process running on a UNIX workstation (called ceimon).

EPICS Requirements

D.2

The EPICS software must provide two EPICS database records into which ceimon may
write values.

¢ The CODA Status Record: A single Analog Output record will contain the state
(i.e. Active) of the CODA System.

¢ The CODA Alarm Record: A single Binary Output record will be used for
triggering a signal to the EPICS Alarm Handler software indicating that the data
acquisition run has halted for some reason.

CODA Requirements

D.3

The CODA software must provide a mechanism for ceimon to insert EPICS database
record data into the event stream and hooks for ceimon to halt a CODA data acquisition
run. The event insertion mechanism is accomplished with daInsertevent () which is
part of the CODA RPC library. The mechanism to halt a data acquisition run is accom-
plished with a command line utility that can send various events to the RunControl soft-
ware. For example, to halt a run one might type:

|unix> rccommand -c end

CEIMON Requirements

Ceimon is responsible for six actions.

¢ Self Configuration: ceimon should configure itself with the three configuration files.
The names of these files should be a default value or perhaps pointed to with a UNIX
environment variable.

* Generate DAQ Start Flag: ceimon will retrieve and analyze a the value fields of
specific database records contained in one file and generate a flag if CODA DAQ
may continue or not.

* Insert EPICS Data into CODA Event Stream: ceimon will periodically read value
fields from EPICS database records listed in a second file and call the CODA library
routine dalnsertEvent().

CODA User’s Manual D-1

The CODA/EPICS Interface

¢ Halt CODA DAQ Run: ceimon will use the CODA RunControl command line

utility to send a halt signal to the RunControl software.

Notify CODA User of Run Halt: ceimon will notify the CODA user that it has
stopped the run due to a slow controls signal range error via a pop-up window as
well a to the console logger.

Notify EPICS of Run Halt: ceimon will write a “halted” value the EPICS CODA
Status Record and it will write a value to the EPICS CODA Alarm Record indicating
an alarm state.

D.4 CEIMON Configuration files

There are three configuration files.

The Start File: A file containing slow controls signals and valid ranges for ceimon
to check before CODA RunControl starts a data acquisition run.

The Extra File: A file containing slow controls signals to be inserted into the
CODA event stream not found in the Start file.

The All File: A file containing all slow controls signals whose values are
periodically inserted into the CODA event stream.

FIGURE 2 CODA/EPICS Interface
e
p| 10C
ceimon \
T 10c
[]
[]
[]
config
files 10C
Event Builder

D-2 CODA User’s Manual

APPENDIX E CEBAF Common Event Format

E
The CEBAF Common Event Format was designed to meet the following requirements:
¢ a partitioned format in which each fragment contains a header portion and a data
portion.

¢ arecursive format to support complex structures (a tree). That is, fragments may
contain other fragments within their data fields.

¢ alength field in each fragment header.

* a‘“type” field in each fragment header giving the data type of the data for that
fragment. This allows for data conversion from one machine architecture to another,
and marks each fragment as a branch or leaf node in the tree.

* a‘“tag” field in each header to indicate the source or purpose of the data contained in
that fragment.

* asmall fragment header.

This structure is shown in the following figure:
FIGURE 3 Event with fragment depth of three.

inner-most fragment

[~ header portion

— data portion

outer-most fragment

The last requirement above (low overhead) makes it difficult to derive a single header
format. In some situations it may be desirable to have a header with a lot of identifying
information and a large length field. In other situations, only minimal length and tagging
information is needed.

As aresult of these conflicting requirements, 3 header formats of differing sizes will be
used. The corresponding fragments, in decreasing order of header size and functionality,

9

will be referred to as “banks”, “segments”, and “packets”.

CODA User’s Manual E-1

E.1

CEBAF Common Event Format

Event Format

Banks

Following the nomenclature of other high energy physics formats, the first and largest
constituent will be referred to as a “bank”. The bank header will consist of 2 longwords
in the following format:

FIGURE 4

Bank Header Format

length

tag data_type num
31 16 15 87 0

The bank “length” is the length of the fragment in longwords, excluding the length word
(i.e. length is the number of words to follow); “tag” is an integer identifier which may be
used as an index into an optional dictionary of bank and segment names and titles
(described later); “data_type” is an integer giving the type of data in the data portion of
this bank, and “num” is an integer which may be used as a bank number or may be used
to encode additional information about the bank.

Each event (at its outermost level) will be a single bank in which the bank length is the
event length; for this reason, the minimum overhead per event is 8 bytes. The tag and
num fields together can be used to specify the type of event. For example, physics
events will have a tag of 0XCEBA and a num field equal to the readout code number.

Segments

Applications requiring complex structure with less overhead per fragment can use a
smaller fragment type called a “segment”. The segment header will consist of 1 long-
word in the following format:

FIGURE 5

E-2 CODA User’s Manual

Segment Header Format

tag data_type length

31 2423 16 15 0

The major differences between bank and segment headers are the maximum fragment
length allowed, and the number of available tags; there is also no “num” field in a seg-
ment header, so tags need to be unique. The segment length is still given in longwords
(unsigned, up to 1/4 Mbyte, and excluding the header word), and the tag field (unsigned)
takes on the values 0-255 vs. 0-65535.

Padding of a bank or segment may be necessary to bring it up to a multiple of 4 bytes; it
is up to the application to determine the actual end of the data (it should be obvious from
context).

Note that the bank and segment headers must be treated as longwords for the purposes
of converting between big and little endian machines.

Packets

For data structures with even less overhead per fragment, a third fragment type, the
“packet”, may be used. The packet header will consist of a single 16 bit integer as
shown in the following format:

FIGURE 6

Packet Header Format

tag length

15 87 0

Packets contain data items with widths of no more than 16 bits, and the length field is in
units of 16 bit words. Packets cannot be recursive as there is no “data_type” field to
indicate when the recursion should stop. They are intended to encode small arrays
tagged by a small number (0-255). Unlike banks and segments, packets may start on
odd word boundaries.

Data Types
The following is a preliminary list of defined data types (in hex):

0 = unknown

1 =long (32 bit) integer

2 = IEEE floating point

3 = null terminated ASCII string

4 = 16 bit signed integer

5 = 16 bit unsigned integer

6 = 8 bit signed integer

7 = 8 bit unsigned integer

8 = double precision IEEE floating point
9 = VAX floating point

A = VAX double precision floating point
F = repeating structure

10 = bank

20 = segment

30 = packet with data_type =0

33 = packet with data_type =3

34 = packet with data_type = 4

35 = packet with data_type =5

36 = packet with data_type = 6

37 = packet with data_type =7

Complex Structures

In applications requiring mixed data types (integer particle ID and real particle energy,
for example), banks or segments may contain “repeating structures”. In these banks

CODA User’s Manual E-3

CEBAF Common Event Format

(segments), the first few words of data are the structure description, and the remaining
data words are data items of that structure. The structure description has the following
form:

FIGURE 7 Structure Description Format
sdw 1 sdlen
sdw 3 sdw 2
sdwn/0 sdw n/ n-1
31 16 15 0
where “sdlen” gives the length of the structure description in longwords, “sdw i” is a 16
bit structure description word in one of the following formats:
FIGURE 8 Structure Description Word Format

E-4 CODA User’s Manual

0 repeat nwords

15 14 8 7 0
1 repeat type

15 14 43 0

The basic idea is to encode a format descriptor like (41,4F,5(11,1F),1F). The first form
(high bit zero) is used to encode an open parenthesis: “repeat” gives the repeat count of
the parenthesized expression, and “nwords” gives the number of following descriptor
words until the parenthesis closes. The second form (high bit set) is used to encode a
repeated field of data type given by the low 4 bits. Only types 1 through 8 are currently
allowed. Since the entire structure description must be a whole number of longwords, it
may be necessary to pad the structure with a null descriptor, which is ignored. A repeat
count of zero is not allowed; an implicit repeat is performed on the whole structure until
the end of the bank or segment is reached.

Another condition to keep in mind when designing structures is to make them multiples
of the largest sized data item because some architectures can only access data items on
natural boundaries (i.e. longwords on 4 byte boundaries, short words on 2 byte bound-
aries, doubles on 8 byte boundaries).

One application of structures is as an alternative to packets. For example, consider the

problem of encoding the left and right TDC hits of a wire along with the wire number,

where the data is 16 bits. Using packets would require 3 words per wire, (using the tag
field to give the wire number) but would be limited to 256 wire numbers. Alternatively,
a structure of the form (3I), in which the first word is the wire number and the next 2

E.2

words are the data, allows 65536 wire numbers and still only uses 3 words per wire hit
(plus 2 words of structure definition).

Physical Record Format

E.3

Events (logical records) will be packed into fixed sized physical records. Each physical
record will have an 8 longword header as follows:

BLKSIZ blocksize (in longwords)

BLKNUM block number

HDLEN header length (offset to data)

START offset to first start of logical record in block
END number of valid words (header + data) in block
VER header version number (=1 in CODA 1.0)
(reserved, =0)

(reserved, =0)

All lengths and offsets are in units of longwords, and offsets are relative to the start of
the block (i.e. offset=8 points to the start of the data area). Blocksizes must be multiples
of 256 longwords, and no greater than 32768 longwords (i.e. 1 to 128 Kbytes). With this
convention, the “blocksize” word should only have non-zero data in bits 8-15, and can
be used to detect any byte swapping problem (big/little endian).

Note that if a logical record spans 3 physical records, the middle physical record will
have START=0.

Name Dictionary

The name dictionary is a simple ASCII file, with at most one name entry per line. Curly
brackets {} will be used to indicate the beginning and end of a set of names of sub-frag-
ments.

Each definition line will contain the following:

. index / tag value in hex
¢ fragment name (ASCII)
¢ fragment title (ASCII)

The index value for a bank must be in the range 0000 to FFFF and for a segment it must
be in the range 00 to FF. The fragment name must contain only alphanumeric characters,
and names are case insensitive. The title may contain any printable character. The three
fields are delimited by any amount of white space (space or tab), and the title starts at
the first non-space character after the name and continues to the end of line or to a
matching close curly bracket.

Comments may be embedded anywhere in the file (including the middle of titles) using
C style delimiters:

/*comment */

CODA User’s Manual E-5

CEBAF Common Event Format

If the first non-comment, non-white space character on a line is the left curly bracket, all
following definitions up to the close curly bracket are for substructures of the previous
name. For example:

/* This is a sample name dictionary */
1 aname now is the time /* I hope */ for all
2 another
{1 abc good men
2 def to come to
}
3 lastname (sic)
{99 abc “handle”}

Defines the outermost names aname, another, and lastname, where the fragment
another has 2 defined sub-fragments named abc and def, and lastname has one defined
sub-fragment named abc. By convention, sub-fragments may be uniquely referred to by
giving all parent names in order separated by periods. In this example, another.abc is a
fragment with a title of good men, and lastname.abc has a title of “handle”.

E-6 CODA User’s Manual

APPENDIX F CODA Event Bank Definitions

F

(See Appendix E for a discussion of the bank structure used below.)

F.1 Standard Physics Event

A standard physics event will consist of an outermost bank with a data type of “bank”, a
tag equal to the event type, and the “num” field containing the hex constant 0OxCC (used
to verify that this is an event header word):

event_length

event_type

0x10

0xCC

data bank

data bank

The first data bank is created by the event builder (see below), and other banks come
from the readout controllers. Event types produced by CODA data acquisition front
ends range from 0-15, corresponding to the event readout code.

CODA User’s Manual F-1

CODA Event Bank Definitions

F.2 Event ID Bank
The event builder creates an event ID bank in the following format:
length =4
tag = 0xC000 dtype=1 | num=0
event number
event classification
status summary
The event number is a counter of the events within a run, starting at 1 with each new
run. The event classification word initially holds the 4 bit trigger code; analysis pro-
grams would use other bits to indicate the presence of application specific features in the
event. The status summary initially holds readout status, one bit per readout controller,
and is later replaced with analysis status information.
F.3 Readout Controller Data Banks
Data from each readout controller will be contained in separate banks, with the tag equal
to the ROC number (0-31) and the datatype = 1 (longwords). The num field for these
banks will contain the low 8 bits of the event counter on the corresponding ROC, and
will be used by the event builder to verify that the fragments are properly synchronized.
fragment_length
(code & status) | ROCH# 1 counter
data words
Prior to event building, the high 11 bits of the tag field will be used to pass the readout
code number and status information from the ROC’s to the event builder. These bits are
cleared by the event builder leaving a tag from 0-31.
F.4 Run Control and Sync Events

F-2 CODA User’s Manual

For each of the state transitions prestart, go, pause, and end, and for each synchroniza-
tion event, each ROC generates an event fragment containing information about the
transition. The event builder waits until it receives the events from all participating

ROC’s and then forwards only one of the events up the analysis chain. The format for
these events is as follows:

event_length

event_type

1 0xCC

data words

The first data word in each of these events is a 32 bit integer containing the time in sec-
onds since Jan 1, 1970 GMT (this follows the Unix convention for time formats). Addi-
tional data words specific to the event type follow (see below).

The following event types are defined:

Event Type Definition
16 Sync event
17 PreStart event
18 Go event
19 Pause event
20 End event

F.5 Sync Event

Sync events are generated automatically by the trigger supervisor, or upon operator
command. Sync events have the following format:

event_length =5

event_type = 16 1 0xCC

time

number of events since last sync

number of events in run

status

Time is the number of seconds since Jan 1, 1970 GMT. Status is a bit mask with one bit
set for each ROC which encountered an error in checking the readout synchronization.

CODA User’s Manual F-3

F.6

CODA Event Bank Definitions

PreStart Event

F.7

PreStart events are generated during the transition from the downloaded state to the pre-

started state. PreStart events have the following format:

event_length =4

event_type =17 1

0xCC

time

run number

run type

Time is the number of seconds since Jan 1, 1970 GMT. The run type is a 32 bit number

from the rcRunTypes file (Appendix A).

Go Event

F-4 CODA User’s Manual

Go events are generated for each Start or Resume command. Go events have the follow-

ing format:

event_length = 4

event_type = 18 1

0xCC

time

(reserved)

number of events in run thus far

Time is the number of seconds since Jan 1, 1970 GMT. The number of events in the run
will be O for the first “go” (i.e. the initial Start command), and will be non-zero for each

resume command following a pause.

F.8 Pause Event

Pause events are generated for each transition from the active state to the paused state.
Pause events have the following format:

event_length =4

event_type = 19 1 0xCC

time

(reserved)

number of events in run thus far

Time is the number of seconds since Jan 1, 1970 GMT.

F.9 End Event

End events are generated each time a run is ended. End events have the following for-
mat:

event_length = 4

event_type = 20 1 0xCC

time

(reserved)

number of events in run

Time is the number of seconds since Jan 1, 1970 GMT.

CODA User’s Manual F-5

CODA Event Bank Definitions

F-6 CODA User’s Manual

A
analysis program
linking 3-14

B
banks E-2

event ID F-2

readout controller F-2
blocksize E-5
buttonFeedback 3-7, A-4

C
CAMAC 2-2,4-2,4-6
caopen 4-3
ccec 4-2
cced 4-2
ccci 4-2
ceez 4-2
ccle 4-2
cclm 4-2
cdlam 4-2
cdreg 4-2
cedump 3-15
name dictionary E-5
cefdmp 3-15, 5-4
ceimon D-1
ceMsg 4-9
cePmsg 4-9
cfga 4-2
cfmad 4-2
cfsa 4-2
cfubc 4-2
cfubl 4-2
cfubr 4-2
coda_activate 3-3, 5-8, A-1
components A-1
configuration string 2-6
configuring CODA 2-5
csga 4-3
csmad 4-3
cssa 4-2
csubc 4-3
csubl 4-3
csubr 4-3
cted 4-2
ctci 4-2
ctgl 4-2
ctlm 4-2
ctstat 4-3

D

daCopyEvent 4-20
daCopyNext 4-20
daCopyPoll 4-20
daCopyRegister 4-20
daCopyUnregister 4-20
dalnsertEvent 4-20
daReadInt 4-20

data flow 2-1

data types E-3
dump, see cefdmp

E
end F-5
errors 4-9

evClose 4-11
Event Builder 2-3
event number F-2
Event Recorder 2-3
events

banks E-2

dump utility 3-15

end F-5

format E-1

go F-4

I/O routines 4-11

inserting 4-20

packets E-3

pause F-5

physical records E-5

physics F-1

prestart F-4

segments E-2

spying 4-20

structures E-4

synchronization F-3
evloctl 4-11
evOpen 4-11
evRead 4-11
evWrite 4-11

F

FASTBUS 2-2,C-5
FASTBUS I/O 4-6
fb_init_1 4-6

fpac 4-6

fpad 4-6

fparb 4-6

fparel 4-6

fpr 4-6

fprb 4-6

fprel 4-6

fpsar 4-6

fpsaw 4-6

fpw 4-6

fpwb 4-6

FSCC 2-2

H
HBOOK 4-14
ntuples 4-14
HBOOKI1 4-14
HBOOK?2 4-14
HBOOKN 4-14
HFILL 4-14
histograms 4-14
HLIMAP 4-14
HLIMIT 4-14

M
makelist 3-12

N
name dictionary E-5
ntuples 4-14

(0]
online 3-7, A-4

P
packets E-3

CODA User’s Manual -1

pause F-5
PAW 2-3
prestart F-4

R
RCDEFAULTS 3-6, 3-7
rcDefaults A-4
rcExperiment A-4
rcNetwork 2-5, 3-2
rcPriority A-4
rcRunNumber A-4
rcRunTypes 2-5, 3-3, A-2
rcService 4-17
readout controller 2-2
readout controllers
configuration 3-11, C-1
readout language C-1
ROC, see Readout Controllers
rpcUpdate 3-7, A-4
Run Control
architecture 2-4
components 3-2
configuration 2-5
network definitions 3-2
starting 3-1
state machine 2-5, 3-5
user interface 2-6
<runType>.config 3-4, A-2
<runType>.options 3-4, A-3

S

scReporting 3-6, 3-7, A-4

segments E-2

severity 4-9

spying 4-20

structures E-4

synchronization 3-10
event format F-3

T
trigger
multi-level 2-2
Trigger Supervisor 2-1
Trigger Supervisor 3-7
configuration 3-7, B-1
parameters 3-8, B-1
synchronization 3-10

U

usrDownload 4-17
usrEnd 4-17
usrEvent 4-17
usrGo 4-17
usrPause 4-17
usrPrestart 4-17

Vv

verboseReporting 3-7, A-4
VME 2-2

VXI 2-2

X
xcefdmp 5-4

-2 CODA User’s Manual

