Bayesian electron spectrum reconstruction

from dose-depth profiles

V. |. Dimitrov, IAC-ISU

Bayesian

Function: adjective

being, relating to, or involving statistical methods that assign probabilities or
distributions to events (as rain tomorrow) or parameters (as a population mean)
based on experience or best guesses before experimentation and data collection,
and that apply Bayes' theorem to revise the probabilities and distributions after
obtaining experimental data.



The Physical Problem
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a) space-charge repulsion ° ‘ 2 : “ [om]
b)  stray magnetic fields Dose-depth profile (6MeV electrons in water)

Fredholm integral equation (15t kind):
an ill-posed mathematical problem!

D(x) = TdeW(x, £)S(€)

Additional complications due to beam’s

S(e)="7 . . . ;
size and emittance/divergence exist as well.



RBS Counts

The Status Quo

|) Bayesian methods in similar problems:

Rutherford Back-Scattering ( H or He ions ~1MeV ):
(e.g. R. Fisher et al., Phys. Rev. E55 p.6667 (1997))
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Relative number of paricles

The Status Quo

i) Ad hoc methods in electron spectrum reconstruction problems

e.g. A. Chvetsov et al. Med. Phys. 29 p. 578 (2002)
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o Tichonov regularization and spectrum
No regularization, brute force splitting into smooth and peaked parts



- Txde‘W(x, EF(&)=0
Probability Theory 5

l

a well-posed problem
of inference

S(¢) - S(&) +F(e)

An example of inference: a) If Ais true, than B is true as well (prior information);
b) A is false (data from experiment);
c) B is less plausible (than before the experiment)



Basic Probability Theory |

Notations:
P(A) . Probability of A being true
P(A) . Probability of A being false (.not.A being true)

P(A|B) : Probability of A being true provided that B is true

P(A|BC) : Probability of A being true provided that both B and C
are true



Basic Probability Theory Il

“common sense reduced to calculation” (Laplace)

Range: P(A) U[0]]

Sum rule: P(A) +P(A) =1

Productrule: P(AB|C)=P(A|BC)P(B|C)

Bayes’ theorem (in its simplest form) is an immediate
consequence of the above product rule and the commutativity
of propositions:

P(AB) = P(BA)



Bayes’ Theorem

H — hypothesis
D — data
| — prior information

P(HD|[I)=P(H |DD)P(D|[I)=P(D|HI)P(H [I)=P(DH |1)

<«

sampling distribution / likelihood

posterior \\ — g:ic?brability
probability — -
(prior)
~ P(H [DI) = P(D|HD)P(H |I)
P(D 1)




Bayes’ Theorem as a Learning Prescription

result of the experiment

\ our state of
updated knowledge —  knowledge before
. P(D|HI)P(H [1)“ | the cxperiment
— P(H|DI)=
P(D1)
?

1
normalization

In 1946, R.T. Cox proved that any consistent scheme of logical
inference must be equivalent to probability theory as described




| east-Informative Priors

a) Discrete probabilities: Principle of Insufficient Reason

b) Continuous probabilities: Symmetries / Invariance requirements
Example: N(t) = N,expAt)  P(A)dA ~dA
N(t) = N,expt/r)  P(r)dr ~dr ~dA/ A

P(A)dA=P(al’)d(al') = P(1)dA ~ ‘L_/‘ ~ d_TT (Jeffrey’s prior)

MAXENT principle (Jaynes’1957, but originally Gibbs'1902):

__ P(x)
S= j dxP(x) In P00 " max

(Kullback-Leibler ('51) relative entropy)



The unigueness of entropy

One seeks a “ranking” scheme R(p) for probability distributions p(y):

i) Locality: R(p) = [dy f(p(y))
i) Invariance: R(p) = [ dy p(y) f(p(y))
- m(y)

iil) Consistency for independent systems:

R(p.p,) = R(p,) + R(p,)

[y, pIpAy) TR <[y pi) £ +ay, paya) ()
mIm,(y; m(y) m(y.)

for [dyp(y)=1 = f(p)=In(p)

thus | R(p)=aypy)inc 0




The Likelihood

Gaussian likelihood function (just one of many possible):

exp(—);)
P(D|HI)=—

N 2710,
=1

v i[D F(H)j

i=1 i

Here, o,is the error of the measurement of the i-th data point D, and
F.(S) is the calculated value of D, assuming H.



Application to the problem at hand

i) Discretization: Ema
D(x) = j deW(x,£)S(€)
N _ 0
S(e)de - sAg, S(e) = Z sF (&) S(e) =7
s =3(¢) N Fredholm equation

[deF ()F (e) = 9,

D F(&F(e)=d(e-¢)
g
Too fine a mesh (too big a basis) carries the g
danger of overfitting (ringing). o
d =1 dxD(X)G
= [xD(XG (x) .
W, = [ [ dxdeW(x,)G, ()F; (€) . J

5 = [deS(e)F (¢)

Matrix inversion



Application to the problem at hand

i) The “hypothesis”:

N degrees of freedom

Ny
Every set of s, gives us a spectrum  S(&) = Zs F (&)
i=1

H:s0{s",dst ns 0{s?,ds} n---s, O{s'",ds}
P(H | X)=P(s 0{s",ds} n s, 0{s®,ds} n ---s, O{s,ds} | X)

i) The “prior”:

The choice of the prior is where the art in this science is!

For the sake of example, the joint Jeffrey’s prior would be

P(H |I>{|ﬁ||s‘” @_

1=1



Application to the problem at hand

i) The Bayes theorem and the inferred spectrum:

eXp(—lz[di L (S)j )

2= 0,
P{sHDI) ~ —— 55—
e
The most probable spectrum: P({s}|DI) - max|
18(d -D(s))
exp=S| G~ PitS)
p( 221’,( - j)

The inferred spectrum: | § = J.d Nss

! u k ('I>
|
111
=] 1=

The multiple integral is best taken by Monte Carlo methods. If the results are to be
trusted, the most probable and the average spectra should be fairly similar.




Application to the problem at hand

iv) The Bayesian approach produces estimates of the guality

of the result as well!
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It can be shown that whenever
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the most-probable and the average spectra
are “close”.

R.Fisher et al. 1996
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Experimental

aluminum half-cylinders

Ydose

Electron beam |:>
Z

;

thin radiochromic film

0 1

Dose-depth profile

is overly sensitive

The initial part of the profile (for small depths)
discarded.

to electron beam divergence and therefore should be




MCNPX simulation

Theoretical
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Work to be done

1) modification of the MCNPX code to track electrons in external
magnetic and electric fields;

i) calculation of dose-depth profile database(s) for a range of
electron energies and beam divergences;

i) Bayesian deconvolution algorithm development and software
implementation;

Iv) code(s) validation and testing.

Interested students please contact V. Dimitrov at 282-5472




