Bayesian electron spectrum reconstruction from dose-depth profiles

V. I. Dimitrov, IAC-ISU

Bayesian

Function: adjective
being, relating to, or involving statistical methods that assign probabilities or distributions to events (as rain tomorrow) or parameters (as a population mean) based on experience or best guesses before experimentation and data collection, and that apply Bayes' theorem to revise the probabilities and distributions after obtaining experimental data.

The Physical Problem

a) space-charge repulsion
b) stray magnetic fields

$$
\begin{aligned}
& D(x)=\int_{0}^{\varepsilon_{\max }} d \varepsilon W(x, \varepsilon) S(\varepsilon) \\
& S(\varepsilon)=?
\end{aligned}
$$

Dose-depth profile (6 MeV electrons in water)

Fredholm integral equation ($1^{\text {st }}$ kind): an ill-posed mathematical problem!

Additional complications due to beam's size and emittance/divergence exist as well.

The Status Quo

i) Bayesian methods in similar problems:

Rutherford Back-Scattering (H or He ions $\sim 1 \mathrm{MeV}$):
(e.g. R. Fisher et al., Phys. Rev. E55 p. 6667 (1997))

Apparatus Function Determination (mono-isotopic Co has a single narrow line)

Spectrum Deconvolution
(Cu layer on Si substrate)

The Status Quo

ii) Ad hoc methods in electron spectrum reconstruction problems
e.g. A. Chvetsov et al. Med. Phys. 29 p. 578 (2002)

No regularization, brute force
a) 6 MeV

Tichonov regularization and spectrum splitting into smooth and peaked parts

$$
\begin{aligned}
& \int_{0}^{\varepsilon_{\max }} d \varepsilon W(x, \varepsilon) F(\varepsilon)=0 \\
& S(\varepsilon) \rightarrow S(\varepsilon)+F(\varepsilon)
\end{aligned}
$$

An example of inference: \quad a) If A is true, than B is true as well (prior information);
b) A is false (data from experiment);
c) B is less plausible (than before the experiment)

Basic Probability Theory I

Notations:
$P(A) \quad:$ Probability of A being true
$P(\bar{A}) \quad:$ Probability of A being false (.not.A being true)
$P(A \mid B) \quad$: Probability of A being true provided that B is true
$P(A \mid B C)$: Probability of A being true provided that both B and C are true

Basic Probability Theory II

"common sense reduced to calculation" (Laplace)

Range:

$$
P(A) \in[0,1]
$$

Sum rule:

$$
P(A)+P(\bar{A})=1
$$

Product rule: $\quad P(A B \mid C)=P(A \mid B C) P(B \mid C)$

Bayes' theorem (in its simplest form) is an immediate consequence of the above product rule and the commutativity of propositions:

$$
P(A B)=P(B A)
$$

Bayes' Theorem

H - hypothesis
D - data
I - prior information

$$
P(H D \mid I)=P(H \mid D I) P(D \mid I)=P(D \mid H I) P(H \mid I)=P(D H \mid I)
$$

sampling distribution / likelihood

Bayes' Theorem as a Learning Prescription

In 1946, R.T. Cox proved that any consistent scheme of logical inference must be equivalent to probability theory as described

Least-Informative Priors

a) Discrete probabilities: Principle of Insufficient Reason
b) Continuous probabilities: Symmetries / Invariance requirements

$$
\begin{array}{ll}
\text { Example: } & N(t)=N_{0} \exp (-\lambda t) \quad P(\lambda) d \lambda \sim d \lambda \\
& N(t)=N_{0} \exp (-t / \tau) \quad P(\tau) d \tau \sim d \tau \sim d \lambda / \lambda^{2} \\
P(\lambda) d \lambda \stackrel{ }{=} P\left(a \lambda^{\prime}\right) d\left(a \lambda^{\prime}\right) \Rightarrow P(\lambda) d \lambda \sim \frac{d \lambda}{\lambda} \sim \frac{d \tau}{\tau} \quad \text { (Jeffrey's prior) }
\end{array}
$$

MAXENT principle (Jaynes'1957, but originally Gibbs'1902):

$$
S=-\int d x P(x) \ln \frac{P(x)}{P_{0}(x)} \rightarrow \max
$$

(Kullback-Leibler ('51) relative entropy)

The uniqueness of entropy

One seeks a "ranking" scheme $R(p)$ for probability distributions $p(y)$:
i) Locality: $\quad R(p)=\int d y f(p(y))$
ii) Invariance: $\quad R(p)=\int d y \mathrm{p}(y) f\left(\frac{p(y)}{m(y)}\right)$
iii) Consistency for independent systems:

$$
\begin{aligned}
& R\left(p_{1} p_{2}\right)=R\left(p_{1}\right)+R\left(p_{2}\right) \\
& \int d y_{1} \mathrm{dy}_{2} \mathrm{p}_{1}\left(y_{1}\right) \mathrm{p}_{2}\left(y_{2}\right) f\left(\frac{\mathrm{p}_{1}\left(y_{1}\right) \mathrm{p}_{2}\left(y_{2}\right)}{m_{1}\left(y_{1}\right) m_{2}\left(y_{2}\right)}\right)=\int d y_{1} \mathrm{p}_{1}\left(y_{1}\right) f\left(\frac{\mathrm{p}_{1}\left(y_{1}\right)}{m_{1}\left(y_{1}\right)}\right)+\int \mathrm{dy}_{2} \mathrm{p}_{2}\left(y_{2}\right) f\left(\frac{\mathrm{p}_{2}\left(y_{2}\right)}{m_{2}\left(y_{2}\right)}\right) \\
& \quad \text { for } \int d y p(y)=1 \quad \Rightarrow f(p)=\ln (p)
\end{aligned}
$$

thus

$$
R(p)=\int d y \mathrm{p}(y) \ln \left(\frac{p(y)}{m(y)}\right)
$$

The Likelihood

Gaussian likelihood function (just one of many possible):

$$
\begin{gathered}
P(D \mid H I)=\frac{\exp \left(-\frac{\chi^{2}}{2}\right)}{\prod_{i=1}^{N} \sqrt{2 \pi} \sigma_{i}} \\
\chi^{2}=\sum_{i=1}^{N}\left(\frac{D_{i}-F_{i}(H)}{\sigma_{i}}\right)^{2}
\end{gathered}
$$

Here, σ_{i} is the error of the measurement of the i-th data point D_{i} and $F_{i}(S)$ is the calculated value of D_{i} assuming H.

Application to the problem at hand

i) Discretization:

$$
\begin{aligned}
& D(x)=\int_{0}^{\varepsilon_{\max }} d \varepsilon W(x, \varepsilon) S(\varepsilon) \\
& S(\varepsilon)=?
\end{aligned}
$$

Fredholm equation

$$
\begin{aligned}
& d_{i}=\sum_{j} W_{i j} s_{j} \\
& s_{i}=\text { ? }
\end{aligned}
$$

$$
\begin{aligned}
& S(\varepsilon)=\sum_{i=1}^{N} s_{i} F_{i}(\varepsilon) \\
& \int d \varepsilon F_{i}(\varepsilon) F_{j}(\varepsilon)=\delta_{i j} \\
& \sum_{i=1}^{\infty} F_{i}(\varepsilon) F_{i}\left(\varepsilon^{\prime}\right)=\delta\left(\varepsilon-\varepsilon^{\prime}\right)
\end{aligned}
$$

Too fine a mesh (too big a basis) carries the danger of overfitting (ringing).

$$
\begin{aligned}
& d_{i}=\int d x D(x) G_{i}(x) \\
& W_{i j}=\iint d x d \varepsilon W(x, \varepsilon) G_{i}(x) F_{j}(\varepsilon) \\
& s_{i}=\int d \varepsilon S(\varepsilon) F_{i}(\varepsilon)
\end{aligned}
$$

Application to the problem at hand

ii) The "hypothesis":

Every set of s_{i} gives us a spectrum $\quad S(\varepsilon)=\sum_{i=1}^{N} \sqrt{s_{i}} F_{i}(\varepsilon)$

$$
\begin{aligned}
& H: s_{1} \in\left\{s^{(1)}, d s\right\} \cap s_{2} \in\left\{s^{(2)}, d s\right\} \cap \cdots s_{N} \in\left\{s^{(N)}, d s\right\} \\
& P(H \mid X)=P\left(s_{1} \in\left\{s^{(1)}, d s\right\} \cap s_{2} \in\left\{s^{(2)}, d s\right\} \cap \cdots s_{N} \in\left\{s^{(N)}, d s\right\} \mid X\right)
\end{aligned}
$$

iii) The "prior":

The choice of the prior is where the art in this science is!
For the sake of example, the joint Jeffrey's prior would be

$$
P(H \mid I) \sim\left[\prod_{i=1}^{N}\left|s^{(i)}\right|\right]^{-1}
$$

Application to the problem at hand

ii) The Bayes theorem and the inferred spectrum:

$$
P(\{s\} \mid D I) \sim \frac{\exp \left(-\frac{1}{2} \sum_{i=1}^{N}\left(\frac{d_{i}-D_{i}(s)}{\sigma_{i}}\right)^{2}\right)}{\prod_{k=1}^{M} \sigma_{k} \prod_{i=1}^{N}\left|s^{(i)}\right|}
$$

The most probable spectrum:

$$
\left.P(\{s\} \mid D I) \rightarrow \max \right|_{\{s\}}
$$

The inferred spectrum:

$$
\bar{s}_{i}=\int d^{N} S S_{i} \frac{\exp \left(-\frac{1}{2} \sum_{i=1}^{N}\left(\frac{d_{i}-D_{i}(s)}{\sigma_{i}}\right)^{2}\right)}{\prod_{k=1}^{M} \sigma_{k} \prod_{i=1}^{N}\left|s^{(i)}\right|}
$$

The multiple integral is best taken by Monte Carlo methods. If the results are to be trusted, the most probable and the average spectra should be fairly similar.

Application to the problem at hand

iv) The Bayesian approach produces estimates of the quality of the result as well!
$\left(\Delta \bar{s}_{i}\right)^{2}=\int d^{N} s\left(s_{i}-\bar{s}_{i}\right)^{2} \frac{\exp \left(-\frac{1}{2} \sum_{i=1}^{N}\left(\frac{d_{i}-D_{i}(s)}{\sigma_{i}}\right)^{2}\right)}{\prod_{k=1}^{M} \sigma_{k} \prod_{i=1}^{N}\left|s^{(i)}\right|}$

It can be shown that whenever

$$
\frac{\left|\Delta \bar{s}_{i}\right|}{\left|s_{i}\right|} \ll 1
$$

the most-probable and the average spectra are "close".

Experimental

The initial part of the profile (for small depths) is overly sensitive to electron beam divergence and therefore should be discarded.

Theoretical

Work to be done

i) modification of the MCNPX code to track electrons in external magnetic and electric fields;
ii) calculation of dose-depth profile database(s) for a range of electron energies and beam divergences;
ii) Bayesian deconvolution algorithm development and software implementation;
iv) code(s) validation and testing.

Interested students please contact V. Dimitrov at 282-5472

