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Abstract

The problem of assigning probabilities when little is known is analized in
the case where the quanities of interest are physical observables, i.e. can be
measured and their values expressed by numbers. It is pointed out that the
assignment of probabilities based on observation is a process of inference, in-
volving the use of Bayes’theorem and the choice of a probability prior. When
a lot of data is available, the resulting probability are remarkable insensitive to
the form of the prior. In the oposite case of scarse data, it is suggested that
the probabilities are assigned such that they are the least sensitive to specific
variations of the probability prior. In the continuous case this results in a prob-
ability assignment rule wich calls for minimizing the Fisher information subject
to constraints reflecting all available information. In the discrete case, the cor-
responding quantity to be minimized turns out to be a Renyi distance between
the original and the shifted distribution.
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I. Introduction

The problem of probability assignment has been stirring debates and con-
troversy ever since Laplace introduced the notion of indifference as an argument
in specifying prior distributions. He thus started a quest for a statistical Holy
Grail: prior distributions reflecting ignorance. Today, more than two centuries
later, a satisfactory solution to this problem is still elusive. In what follows we
offer a physicist’s take on the somewhat narrower problem of assigning proba-
bilities for measurable quantities, or, as physicists call them, observables. Strict
space limitations will force the exposé to be much more concise than it should
have been, but hopefully the main message will be able to come through.

II. Probabilities as opinions: an objective take on subjec-
tivity

When we state "A has a probability p of being true", what we really mean
is "We don’t know whether A is true or false, yet we believe that, if our world
existed together with a number of its replicas, A would be true in pN out of N
of them when N→∞". Now, it should be evident that, because of the implied
limit procedure, there is no practical way of verifying this statement. One
cannot possibly reproduce a given physical situation down to its ever minute
details several, let alone infinite, number of times - hence "we believe". Without
this leap of faith no rational science would be possible. An example of this sort
of belief can be found in Mechanics - we know that material points do not exist,
but we believe that if they did, they would behave according to the Fist, Second
and Third Newton’s laws. The source of our faith in this case are countless
observations of the behavior of real objects from afar. It is practice that sorts out
"good" from "bad" beliefs. Different people, however, have different experiences,
so beliefs are subjective and may differ significantly from one person to another.
It is, therefore, of significant interest to inquire what is it that makes it possible
for rational agents to agree among themselves on what exactly they observe.
To that end, let us try to walk in Laplace’s "inverse probabilities" footsteps in
analyzing how opinions are formed from observations. The following builds on
[1].

1. The Anatomy of a Measurement

For our purposes, we shall simplistically call "a measurement" a well-defined
procedure to put a real number in correspondence with a physical phenomenon.
Usually we have a good idea what the range R = [a, b] of this number is,
but the practicalities of the particular procedure prevent it from being precise.
Thus, instead of a real number ∈ [a, b] the outcome of a single measurement
is rather a pointer (index) i to a subinterval Di ⊂ [a, b] where [a, b] = ∪ni=1Di
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and Di ∩ Dj 6=i = ∅. Repeating1 the measurement m times we end up with
a histogram of n bins where each bin i contains si - the number of times the
measurement fell in that bin. Obviously,

∑n
i=1 si = m. Now, if a result in bin

i had an assigned probability pi in a single measurement, probability theory
teaches us that the probability of a set {s} is of the multinomial form P (s|p) =
m!

Πn
i=1si!

ps11 p
s2
2 · · · psnn . We, however, are interested in the opposite situation - the

results of the measurements {s} are known, and we want to assign probabilities.
In this case we recognize P (s|p) as the likelihood and apply the Bayes theorem
to obtain the probability of an assignment {p} given the measurements {s}

P (p|s) = N−1 ps11 p
s2
2 · · · psnn π(p)δ(Σni=1pi − 1)

where N =
∫
dnpps11 p

s2
2 · · · psnn π(p)δ(Σni=1pi−1) is a normalization factor. π(p)

is a probability prior which originates in whatever knowledge we have about
the phenomenon in question, the measuring procedure and the structure of
the domain’s decomposition [a, b] = ∪ni=1Di. For example, one might find it
reasonable to assign prior probability proportional to the measure (length) of
Di etc.

2. The Rôle of the Probability Prior

With (1) the most natural way to assign the individual probabilities is as
the expectations

< pk >= N−1

∫
dnpps11 p

s2
2 · · · p

sk+1
k · · · psnn π(p)δ(Σni=1pi − 1)

where the integration is over the unit hypercube p. ∈ [0, 1]. For a uniform
prior π(p) = 1 the integration [Tertsoff&Bayer] produces < pk >= sk+1

m+n =
1

1+ n
m

(
fk + 1

m

)
where fi = si/m are the "sample frequencies". The variances

of this assignment are easily calculated to be < (∆pk)2 >= 1
m+n+1 < pk >

(1− < pk >). For a different prior —uniform on a quadrant of the hypersphere
defined by pi = ω2

i —the integrals have been evaluated in [Sykora] as < pk >=
1

1+ n
2m

(fk + 1
2m ) and < (∆pk)2 >= 1

m+1+n/2 < pk > (1− < pk >). For a general
prior we use the average value theorem from Analysis to obtain

< pk >=
π(ς ′k)

π(ς)
< pk >0

< (∆pk)2 >=
π(ς ′′k)

π(ς)
< (∆pk)2 >0 +

[
π(ς ′′k)

π(ς)
−
(
π(ς ′k)

π(ς)

)2
]
< pk >

2

where ς, ς ′k and ς
′′
k are points in the unit hypercube close to the maxima of

Πn
i=1p

si
i δ(1 −

∑n
i=1 pi), pkΠn

i=1p
si
i δ(1 −

∑n
i=1 pi) and p

2
kΠn

i=1p
si
i δ(1 −

∑n
i=1 pi),

1"Repeating" here is a misnomer - what is meant is an "ensamble" of replicas of the world
with one measurement performed in each of its members.

3



correspondingly, and the zero-subscript quantities are those corresponding to
uniform prior. Assuming abundance of data (large si, and, correspondingly, m)
and smooth prior, it can be shown that ς ′k−ς ' nk

m and ς ′′k−ς ' 2nk
m where

(nk)i = δki. Hence, expanding to the lowest non-trivial order of 1/m

< pk >=< pk >0

(
1 +

1

m

∂kπ

π

)
+O(

1

m2
)

< (∆pk)2 >=< (∆pk)2 >0

(
1 +

2

m

∂kπ

π

)
+
< pk >

2
0

m2

(
3

2

∂2
kπ

π
− (

∂kπ

π
)2

)
+O(

1

m3
)

Thus, we recognize that the arbitrariness of the probability prior induces multi-
plicative noise in the assigned probabilities, and affects their variances both by
rescaling and shifting. It is also worthwhile noticing that the only instance of as-
signing zero probability would be due to the choice of the prior; measurements
alone, no matter how numerous, cannot force us to assign strictly vanishing
probabilities.
In the other extreme - no (m = 0) data available - the probability assignment

derives through (2) strictly from the prior:

< pk >= N−1

∫
dnp pkπ(p)δ(Σni=1pi − 1) = pk

For one preformed measurement (m = 1) that produced a result in bin i

< pk >= N−1

∫
dnp pipkπ(p)δ(Σni=1pi − 1) =

pkpi
pi

and analogously for higher values of m. Probabilities are most useful when
little or no data is available, and it is seen that such "ignorance" probability
assignments for measurable quantities are, not surprisingly, entirely determined
by the choice of the prior π(p).
An interesting result is obtained when we go to the continuum limit n→∞.

With pk =
∫
Dk

dxp(x) =
∫ xk+∆xk
xk

dxp(x) = ∆xkp(xk) + 1
2∆x2

kp
′(xk) + · · · , the

usual identification pk = ∆xkp(xk) for ∆xk → 0 only makes sense when the
probability density p(x) is everywhere differentiable in [a, b]. In order to avoid
handling ugly continual integrals, we perform the n → ∞ limit at the stage
where, with µk ≡

π(ς′k)
π(ς) and σ(xk) ≡ limn→∞

1
n∆xk

,

< p(xk) >= µ(xk) lim
n→∞

< pk >0

∆xk
= µ(xk) lim

n→∞

[
m

m+ n
f(xk) +

n

m+ n
σ(xk)

]
We observe that, for any finite amount of data (m <∞) the assigned probability
density < p(x) >= µ(x)σ(x) depends on the metrics σ and the prior but not on
the data, while for m = ∞ the result depends on the order in which the limits
are taken. Only for m → ∞ before n → ∞ is the result proportional to the
"sample frequency" density f(x).
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To summarize, in order to relate probabilities (opinions) to the real world
(sample frequencies), we need the help of the Bayes theorem where a probability
prior enters the game. Hence, even when a lot of data is available, the probability
assignments are not unambiguous - the arbitrariness of the prior manifests itself
as a multiplicative noise in the probabilities and in their variances. When little
or no data is available the assignments derive directly from the chosen prior. Let
us also emphasize an important lesson from the above: the widely held opinion
that a probability distribution represents a "state of knowledge" is wrong. It
is rather the sample frequencies, coming from observations, which constitute
"knowledge". Probabilities are necessarily inferred, and thus represent only a
"state of belief". The importance of this subtle distinction will become apparent
in what follows.

III. Assigning Probabilities

The most intellectually appealing scheme for assigning probabilities, in our
opinion, was put forward by Jaynes around the middle of the last century, un-
der the name "Maximum Entropy" (MaxEnt) principle. It is very diffi cult for
a rational person to argue with its general formulation, which simply calls for
inferential coherence by prescribing the assignment of the least committed prob-
ability distribution consistent with all available information. However, opinions
rapidly start to diverge when it comes to specifying how exactly the "least com-
mitted" distribution is defined and what exactly constitutes "available informa-
tion". On the first point, Jaynes itself maintained that the "least committed"
distribution is the one with maximal Shannon entropy. His, and many others,
affi nity to Shannon’s entropy was based on a number of appealing properties it
possesses. During the years a tremendous amount of effort was invested into try-
ing to prove that it is "the one and only" reasonable criterion to use. Eventually,
however, two things were, or should have been, understood: 1) The Shannon’s
entropy is but a particular instance of a larger class of equally reasonable Renyi’s
entropies; and 2) The use of Jaynes procedure as a probability assignment rule
is untenable, so it gradually evolved into probability updating rule - leaving us
where we started, with the necessity of assigning an ignorance prior. On the
second point, the available information is most often presented as a number
of prescribed expectation values. Jaynes himself was aware of the conflict be-
tween the expectations being characteristics of probability distributions, and as
such, essentially opinions, and actual information obtained by measurements,
but he took the position that the available information entered in the form of
constraint(s) on the probability distribution even if "It might ... be only the
guess of an idiot" [2]. Before we embark on the ambitious task of trying to
clarify these points, let us briefly address the question of "once assigned, how
can probabilities be used?".
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3. What Use are Opinions?

Probabilities being subjective, it is not immediately obvious how practical
use can be made of them. In statistical sense, probabilities are the best estima-
tors of sample frequencies, and this is about the only guiding principle for their
use. Hence, it appears that plugging probabilities in place of sample frequencies
in various statistical estimators would allow us to infer predictions about the
results of measurements not yet performed. Such statistical estimators are the
Kolmogorov-Nagumo averages [3], defined as < A >φ= φ−1 (

∑
piφ(Ai)) where

φ(x) is continuous and strictly monotonic function, A is an observable, and
Ai is the value of A corresponding to bin i. Different functions φ in general
produce different values of < A >φ. When measuring physical observables, we
can use rulers in different units and origin of the scale. Without an appropri-
ate behaviour of the predictions for the results of measurements upon rescaling
and shifts they would be useless. Therefore, an important requirement to be
imposed on an useful estimator is that < αA + β >φ= α < A >φ +β, where
α and β are arbitrary constants. It is an elementary exercise to show that this
forces φ(x) = x and thus singles out < A >=

∑
i piAi as the rule for predicting

the result of a measurement of A given the probabilities {p}2 . The result of an
actual measurement will most likely differ from the prediction, yet this is still
the best we can do with a probability assignment {p}.

4. The Constraint Rule

Let us first try to make the MaxEnt principle formulation more explicit
in its "using all avilable information" part. The physical problem under con-
sideration can be envisioned as the one of studying a set of observables of a
system, which we will refer to as "the primary observables". This could be,
e.g. the three coordinates x of a material point etc. We seek to assign a
probability distribution p(x) for these observables, which would allow us to a)
Predict the results of future measurements of these observables as their ex-
pectations < x >=

∫
dxxp(x), which is of primary interest, and b) Predict-

ing the result of future measurements of any additional obervable Q(x) as
< Q >=

∫
dxQ(x)p(x), which is of secondary interest. In doing this, we are

generally ignorant, except possibly for the results {a} of previous measurements
of some m observables Ar, r = 1, 2, · · · ,m. Then the constraint rule of the Max-
Ent principle can be regarded as a requirement that the asigned probability
distribution correctly "predicts" the results of the already performed measure-
ments as ar =

∫
dxAr(x)p(x), r = 1, 2, · · · ,m. In other words, the constraint

rule simply forces the probability assignment, which is to be used to predict
the results of future measurements, to be consistent with the results of mea-
surements already performed. Let us stress that what is involved here are single
measurements and their results {a}, and not multiple measurements from which

2One might be tempted to argue in favor of the most probable value instead, but one
immediate indication that this is not a good rule is that it cannot produce any prediction for
uniform probabilities.
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the a− s are obtained as sample averages, as is too often implied in the context
of the MaxEnt. Indeed, if the results of, say, 10 measurements of, e.g., A1 were
known as a1(i), i = 1, 2, · · · , 10 and a1 was taken as a1 = 1

10

∑10
i=1 ai(10) to

be used as a constraint, this would be in a blatant violation of the "using all
available information" principle, since the set of measured values of A1 clearly
contains information also about a′1s variance: ∆a2 = 1

9

∑10
i=1[a1(i) − a1]2 and,

similarly, for its higher moments as well.

5. The Expectation as (sort of) a Parameter

Before we embark on the problem of assigning probabilities, we need to
shortly discuss the parameterization of our probability distributions in terms
of the expectations of their primary observables. For simplicity we will as-
sume one primary parameter x, the case with multiple such parameters being a
straight-forward generalization. In fact, we don’t need to consider a full-fledged
parameterization in which the value of the parameter is equal to the expectation
of x, but just one that would allow us to independently vary the expectation
of x. Thus, we are interested in a parametrization p(x;xe) such that, for any
|ε| << 1, we have

∫
dxxp(x;xe+ε) =< x > +ε+O(ε3) while the normalization

of the probability distribution as well as all other cumulants Cn(x) of x are
preserved

∂

∂xe

∫
dxp(x;xe) =

∂

∂xe

∫
dxCn(x)p(x;xe) = 0 n = 2, 3, · · ·

We formulate the following Conjecture3 : A parameterization with the above
properties is only possible if the probability distribution fulfills certain condi-
tions at the border of its domain, and in this case it is given by p(x;xe) = p(x+

xe). Obviously, with such a parameterization we always have
∂p(x;xe)
∂xe

= ∂p(x;xe)
∂x ,

which is the property we are mainly interested in. Establishing this, we finally
can address the "most uncommitted" element of the general MaxEnt principle.

6. Assigning Robust Probabilities

We have shown above that probability assignments based on observations
have inherent indeterminacy due to the arbitrariness of the probability prior.
Therefore, a natural question to ask is whether an assignment exsists that is, in
some sense, robust against variations of the prior. As already demonstrated, the
latter cause multiplicative noise in the probabilities. Hence we try to formulate
a robustness requirement in tems of a probability distance of the Ali-Silvey
type D(p; p+ δp) →

{p}
min, where δp is the probability noise. As well known, for

normalization-preserving δp(x)

D(p; p+ δp) =
α

2

∫
dxp(x)

(
δp(x)

p(x)

)2

+O(δp3)

3The space restrictions do not allow us to formulate this as a theorem here.
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where the constant coeffi cient α˜1 depends on the particular distance used.
With a general multiplicative δp(x) = ε(x)p(x) the norm-preserving variation
of this with respect to p(x) does not produce a solution. Hence, for the most
general probability noise our robustness requirement is not selective enough to
single out a particular distribution. However, upon some reflection, we realize
that not all possible perturbations in the distribution are of equal importance:
we are mainly interested in the robustness of the probabilities with regard to the
perturbations which would have maximal effect on the primary observables, that
is, choose the multiplicative noise such that δp(x) = ε(x)p(x) = ε′(x) · ∂p(x;xe)

∂xe
.

With this noise

D(p; p+ δp) =
α

2

∫
dxp−1(x;xe)ε

′
(x) · ∂p(x;xe)

∂xe

∂p(x;xe)

∂xe
· ε′(x) +O(ε′3) ≤

≤ α

2

∫
dxε′2(x)TrIF (xe)

where IF (xe) =
∫
dxp−1(x;xe)

∂p(x;xe)
∂xe

∂p(x;xe)
∂xe

is the Fisher information matrix
with respect to xe and the inequality follows from its postivedefinitness. Hence,
for an arbitrary noise factor ε′(x) the tightest bound on the distance results
from the distribution with minimal trace of IF (xe). Using the interchangeability
of the derivatives derived above, we arrive at the final form of the robustness
condition where xe does not play a rôle any more and is therefore dropped∫

dxp−1(x)

(
∂p(x)

∂x

)2

→ min ∩
∫
dxp(x) = 1

When results of measurements of some observables are known, the above min-
imization is constrained such that the resulting probabilities reproduce these
observables. Is there any sense in which the so characterized distribution could
be considered "the least committed"? The Kramer-Rao result for the most ef-
ficient estimator of xe in the form Tr[cov−1(xe)] = TrIF (xe) indicates that in
the situation where p(x) is the one with minimal trace of IF (xe) an invariant
measure of the magnitude of the primary observables’covariance is maximal.
This can be formulated as "The distribution with minimal trace of the Fisher
information is the one for which the most effi cient estimator of the primary ob-
servables (whether it actually exists or not) has the worst possible performance".
Thus the extremal property of p(x) can indeed be interpreted as the distribution
being "the least committed" with regard to the primary observables.

IV. Discussion

Previously [4] we have derived the same condition (in the one-dimensional
case) for assigning uniformative probabilities from the requirement that they be
the least sensitive to coarse-graining. The rational for this requirement was that
coarse-graining decreased the "information content" —if such a thing could be
meaningfully defined —and the distribution with minimal information content
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to start with would be the one least affected by it. The approach is, in a sense,
complementary to Bernardo’s reference priors, where information is gained and
the effect of this gain - maximized. However, in contrast to Bernardo’s, our
result does not depend on which particular distance is used to measure the
sensitivity of the probabilities. That the same assignment rule would result
from the present, quite different, considerations may bear some yet unidentified
significance. Fisher information-like constructs appear almost universally in
physics [5] and one cannot help but wonder to what extent physics laws could be
explained as information processing rules, and answer Toffoli’s question "Where
does Nature shop for its Lagrangians".
Of significant interest is also whether/how the same considerations apply

to probabilities on discrete domains. In physics, discrete domains are usually
obtained by coarse-graining of continuous ones, and thus are "loaded" with
properties inherited from the topology and the metrics of the original contin-
uum. Such remnants could be, for example, various nearest, second nearest
etc. neighbour hierarchies. Choosing the simplest case of a coarse-grained
segment of the real line, the disrete domain is {1, 2, ..., n} and the relevant
observable is < i >= nint(

∑n
i=1 ipi), where the function returns the near-

est integer to its argument. It can be conjectured as in the continuous case
that the only possible way to perturb the probabilities while best preserving
their normalization and higher cumulants of i, again subject to certain con-
ditions on p1 and pn, is equivalent to successive application of p′i = pi − εpi,
p′i+1 = pi+1+εpi, where the multiplicativity of the noise is explicitely used. Then

D(p; p′) = α
2 ε

2
∑n
i=1 p

2
i

(
1
pi

+ 1
pi+1

)
+O(ε3) = α

2 ε
2
(

1 +
∑n
i=1 pi

pi
pi+1

)
+O(ε3).

The maximal robustness with respect to < i > is achieved for a distribution for
which the distance is minimal, hence

n∑
i=1

pi
pi
pi+1

→ min ∩
n∑
i=1

pi = 1

Here the role of the Fisher information is played by the Renyi’s distance of order
−1.
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