
11

Chapter 2

V1495 Module by CAEN

2.1  Overview of V1495 Module

From the V1495 User Manual[4]:

The Mod. V1495 is a VME 6U board, 1U wide, suitable for various digital
Gate/Trigger/Translate/Buffer/Test applications, which can be directly
customised by the User, and whose management is handled by two FPGA’s:
FPGA “Bridge”, which is used for the VME interface and for the connection
between the VME interface and the 2nd FPGA (FPGA “User”) through a
proprietary local bus. FPGA “Bridge” manages also the programming via
VME of the FPGA “User”. FPGA “User”, which manages the front panel I/O
channels. FPGA “User” is provided with a basic firmware which allows to
perform coincidence matrix, I/O register and asynchronous timers functions.

FPGA “User” can be also free reprogrammed by the user with own
custom logic function (see § 5.1). It is connected as slave to the FPGA
“Bridge” via CAEN Local Bus, whose protocol shall be used in order
to communicate with the FPGA “Bridge” and thus with the VME bus.

The I/O channel digital interface is composed by four sections (A, B, C, G)
placed on the motherboard (see § 1.2). The channel interface can be expanded
in the D, E, F sections by using up to 3 mezzanine boards (see § 2.6 and § 2.7),
which can be added, choosing between the four types developed in order to cover
the I/O functions and the ECL, PECL, LVDS, NIM, TTL electrical standard

12

(see § 1.2). The maximum number of channels can be expanded up to 194.

The FPGA “User” can be programmed “on the fly” directly via
VME, without external hardware tools, without disconnecting the board
from the set up, without resetting it or turning the crate off, allowing
quick debug operations by the developer with his own firmware.
A flash memory on the board can store the different programming
file, which can be loaded to the FPGA “User” at any moment.

Four independent digital programmable asynchronous
timers are available for Gate/Trigger applications. It is possible
to chain them for generating complex Gate/Trigger pulse.

2.2  MCLK/LCLK/PLLCLK/PLLCLK_90

There are two digital clocks that synchronize all of the digital state machines in the
V1495 as well as the VFATs for the GEMReadout project. Only the local clock is used in the
v1495usr_firmare project.

The local clock, LCLK, for the V1495 has a fixed frequency of 40Mhz and is the clock
to which all other internal digital states other than those governed by the MCLK are
synchronized. This includes the important read/write/reset operations involving the VME bus.
This clock is necessary for all V1495 projects.

The MCLK is a variable clock for the GEMReadout project that is injected by an external
pulse generator (usually G0) that controls the read/write cycles of the VFAT as well as the data
that is received from the VFATs by the V1495. Usually when referring to the signal as seen
by the VFATs, it is referred to as MCLK per the VFAT2 literature. Internal to the V1495 all
data sent and received is synchronized to the rising edge of MCLK, but here it is referred to
as PLLCLK. Depending on the frequency of MCLK this may be controlled by a PLL. See the
section PLLBlock.vhd for more information. PLLCLK_90 is the improperly named, inverted
version of PLLCLK. This is the signal sent to the VFATs since their read/write cycle is 180
degrees out of phase with the V1495.

Having two different clocks internal to the V1495 has posed some particularly difficult
problems. Care has been taken in this project when one signal is changed in sync with one of
the clocks and then analyzed in sync with the other clock. An example of this is the CalPulse
and Reset functionality in the V1495. When dealing with HDL one has to be careful to include
conditional statements on two separate lines when the changes that occur are due to the two
different clocks; otherwise the HDL translator takes the liberty of changing one of the signals
on the rising edge of the incorrect clock. This is not particularly easy to diagnose as it does not
behave as one might expect from an intelligently designed compiler.

13

2.3  Inputs and Outputs

As one can see from the block diagram in Figure 2-1 below, and as also found in the V1495
User Manual, the v1495 has two LVDS, 32-channel input ports (e.g. A and B), one LVDS,
32-channel output port (C), and two NIM/TTL I/Os (G0, G1) that come standard. There are
three other mezzanine expansion ports that can be purchased with addition 32-channel LVDS/
ECL/PECL, 8-channel NIM/TTL, or even 8-channel 16-bit resolution analogue ports. For
more information on this refer to the CAEN website. A diagram of the physical layout of these
ports from the perspective of the front panel in also included in Figure 2-2 on page 14.

For the purposes of this project, ports A, C, G0, and G1 have been utilized with port G
configured as inputs with TTL logic and 50-Ohm termination. The termination switches are
physically located on the board near the G port, and it is not specifically mentioned in the
V1495 User Manual how to configure this. Furthermore, the inner workings of the V1495 (i.e.
board layout) are not readily available even if the user wishes to have these for configuration
purposes. The easiest way to determine how to program and utilize the V1495 is to familiarize
oneself with the concepts of an FPGA and how the Cyclone FPGA for this board is connected
to the external world via the V1495_USR_FIRMWARE that is provided for free. A basic
overview of this firmware is provided in its own respective section.

All signal received by the V1495 are determined simply on the rising edge of their
respective clocks. There are no other dexterous schemes implemented for noise rejection or
signal degradation.

There are also two LEDs on the front panel of the V1495 for user interface. The DTACK
LED blinks green whenever a VME read/write operation is performed on the board. This can

Document type: Title: Revision date: Revision:

User's Manual (MUT) Mod. V1495 General Purpose VME Board 27/02/2009 6

NPO: Filename: Number of pages: Page:

00117/04:V1495.MUTx/06 V1495_REV6.DOC 45 7

1.2. Block Diagram

Fig. 1.1: Mod. V1495 Block Diagram

A

B

C

32

32

32

32

32

32

USER

PROGRAMMABLE

FPGA

4
4

BRIDGE

FPGA

(VME interface)16 bit

V
M

E
 B

U
S

FLASH

µC

USER

FPGA

CONFIG

LOCAL

BUS
16/32/64 bit

G

(o
p
tio

n
a

l)

L
P

T

8 bit

F
W

L

O
A

D
IN

G

Asyn. Timers

D

E

F

Figure 2-1: Mod. V1495 Block Diagram

14

be used to determine whether or not a firmware update is working. It is not utilized during
normal operation since most read/write operations to the V1495 happen faster than the LED
can blink let alone how fast the human eye can perceive a pulse of this light. The USER LED
has three colors: green/orange/red (really this is just green and red with the orange being the
combination of green and red). The green part of this LED blinks in sync with the system
clock, LCLK, at a rate of 0.60Hz and a 50% duty cycle. This comes from bit 25 of the signal
“HEART_BEAT_CNT” which is incremented at the rising edge of LCLK. The red LED is on
whenever the system reset is active. This happens when either the asynchronous system reset,
nLBRES, is active low or the PLL is not locked. For the version of the GEMReadout firmware
where there is no PLL (e.g. at MCLK frequencies lower than 15Mhz), this LED can only be
active when the asynchronous reset is low.

Document type: Title: Revision date: Revision:

User's Manual (MUT) Mod. V1495 General Purpose VME Board 27/02/2009 6

NPO: Filename: Number of pages: Page:

00117/04:V1495.MUTx/06 V1495_REV6.DOC 45 9

2.4. Front Panel

SCALE

R

16

CH

Mod.

V560E

Mod. V1495

DTACK

A D

B A

GENERAL

PURPOSE

VME BOARD

0

O

U

T

0

31

31
- -

- - ++

+ +

C F

USER

B E

L

V

D

S

/

E

C

L

0

31

- - ++

G0

L

V

D

S

G1

I

N

L

V

D

S

/

E

C

L

I

N

Fig. 2.1: Model V1495 front panel (with A395A/B/C piggy back boards) Figure 2-2: Model V1495 front panel (with A395A/B/C piggy back boards) 

15

2.4  Addressing the V1495

It is important to note that the VME bus address is different than the memory-mapped
logical address for the board as referred to by the PowerPC controller. For most of the
functions written for the Read Out Controller (ROC), these will reference the PowerPC
logical address rather than the VME bus address. The one major exception for this is the
v1495Init() function which uses the VME bus address to check for the presence of the V1495
and then returns the logical memory address. More on this function is described in the sections
on the ROC software.

For this project we have set the address lines of the V1495 to the hex values “0811”
respectively. As can be seen in the silk screen print on the board in Figure 2-3, this is the base
address for the 32 most significant bits in the VME bus address (BASE ADDRESS [31:16]).
This, of course, signifies that the V1495 uses a 32-bit addressing scheme. According to the
V1495 User Manual 24-bit addressing should also be possible, but we have not used this.

Determining the exact relationship between the VME bus address and the ROC memory
address has proven difficult and at best one can only surmise that the two are related by
a simple offset of 0x7800_0000. With the VME bus address of 0x0811_0000 this gives a
memory address of 0x8011_0000.

All register addresses in the V1495 are located using this offset plus their respective
addresses. These registers can essentially be divided into to different classes: Register
addresses 0x0000 – 0x7FFC are the USER FPGA Access registers and register addresses
0x8000 – 0x801FE contain the V1495 CAEN interface registers.

The USER FPGA registers are determined in the v1495usr_pkg.vhd module. Table 2-1

shows these registers with their “struct” equivalents in the ROC software. These registers

Figure 2-3: HEX Address Switches on V1495

16

contain most of the pertinent information being communicated between the V1495 and the
ROC: for example, A_GEMA0_EVENTDATA, address 0x4000, contains the information
from the top of the DataFIFO for the first VFAT detector when requested.

The V1495 CAEN interface registers contain information on the V1495 board itself as well
as controlling how to reflash and reset the VME and USER FPGAs. A discussion of these
functions would be superfluous and as such the reader is referred to the V1495 User Manual
pg. 17-21.[4]

USER FPGA Registers V1495ReadoutCtrl struct Register Numbers Description

A_BOARDIDS MezzanineIDs 0x0000 - 0x0001 Mezzanine IDs for D, E, and F
A_REVISION Revision 0x0002 - 0x0003 Firmware Revision (hardcoded in firmware)
A_RESET Reset 0x0004 - 0x0005 Used to Reset V1495
 Reserved1[5] 0x0006 - 0x000F
A_GEM_TX_START TxStart 0x0010 - 0x0011 Sends GEM_TX_START to TxChannel
A_GEM_SOFT_TRIG SoftTrigger 0x0012 - 0x0013 Sends SOFT_TRIGGER signal
A_GEM_TRIG_WORD TriggerWord 0x0014 - 0x0015 Contains SOFT and HARD trigger words
A_GEM_TX_WORD_(0 - B) TxWord[12] 0x0016 - 0x002D By default, this is V1495 VME Input register
 Reserved2[1] 0x002E - 0x002F
A_GEMA(0-5)_FIFOSIZE FIFOLength[12] 0x0030 - Contains total number of words currently in
 0x0047 dataFIFO as well as the sizeFIFO
A_GEMA(0-5)_EVENTSIZE EventSize[12] 0x0048 - Contains the value for the number of words
A_GEMB(0-5)_EVENTSIZE 0x005F stored in dataFIFO from most resent event
 Reserved3[16] 0x0060 - 0x007F
A_GEMA(0-5)_EVENTS_SENT_H EventsSentH[12] 0x0080 - Contains bits 32 - 16 of the value of the
A_GEMB(0-5)_EVENTS_SENT_H 0x0097 number of events sent
A_GEMA(0-5)_EVENTS_SENT_L EventsSentL[12] 0x00A0 - Contains bits 15 - 0 of the value of the
A_GEMB(0-5)_EVENTS_SENT_L 0x00B6 number of events sent
A_GEMA(0-5)_EVENTDATA EventData[12][128] 0x4000 - Contains the actual DataOut data as captured
A_GEMB(0-5)_EVENTDATA 0x4BFF in 16-bit segments from the VFATs

V1495ReadoutStatus struct Register Numbers

data[16384] 0x0000 - 0x7FFF
control 0x8000
status 0x8002
intLevel 0x8004
intVector 0x8006
geoAddr 0x8008
moduleReset 0x800A
firmwareRev 0x800C
selflashVME 0x800E
flashVME 0x8010
selflashUSER 0x8012
flashUSER 0x8014
configUSER 0x8016
scratch16 0x8018
res1[3] 0x801A
scratch32 0x8020
res2[110] 0x8024
configROM[127] 0x8100

Table 2-1: USER FPGA Registers and “struct” Equivalents

17

2.5  Brief Overview of FPGAs

FPGAs or “Field Programmable Gate Arrays” are electronic ICs -- typically digital -- that
have the ability to be reprogrammed for different purposes. Quite often these circuits are used
in the initial design phases of an IC when a hardwired circuit would be much more costly to
produce for each revision of the product. Once the IC has been proven to work correctly, the
design can then become hardwired onto an IC that can be mass produced.

In our experiment, we also use FPGAs for their ability to be reprogrammed, but we do not
intend on mass-producing a hardwired version of our IC. We simply use its reprogrammable
abilities to perform our highly specialized functionality. In this instance, we control the LVDS
T1 signal going to the VFATs, extract the LVDS packets from the VFAT, store the data, and
then pass it on to the ROC.

When referring to electronics, HDL stands for “Hardware Description Language”. It is the
term used for the code that describes hardware layout. For this reason it is also commonly
referred to as “firmware” as it is neither completely software nor hardware. There are many
different HDL languages, but the only two utilized for this project are VHDL (Very High
Speed HDL) and Verilog. Most of the modules that the user will even want to change are
those in VHDL; it is therefore recommended that if one wants to alter the user firmware for
the V1495 that one spends most of one’s time learning VHDL. There is only one module in
Verilog, V1495usr_hal.vqm, the purpose of which is described in its respective section.

HDL’s utility lies in its ability to describe hardware using a behavioral, a dataflow, or a
structural model to describe the circuit one wants to build.

A behavioral model is one in which the user uses more traditional software flow-control
statements to control the logical properties of the circuit; at this level in VHDL, these include
“Process” statements, “If” statements, “Case” statements, Loop statements (e.g. “Do”,
”While”), “Next”/”Exit” statements, as well as “NULL” statements. It is at this level that the
classic Mealy and Moore state machines are implemented.

Dataflow modeling is similar to behavioral modeling except instead of using flow-control
similar to other traditional programs, one uses concurrent assignment operators to control the
logical flow of data with operators such as “OR”, “AND”, “XOR”, etc. It has some conditional
control like behavioral modeling, but it remains more low-level. It is conceivable that we
could have used this form of modeling for the register-access modules, but these modules are
in behavioral form of modeling.

Structural modeling is virtually a literal translation of traditional digital logic symbols
(e.g. AND-gates, OR-gates, etc) into a software format. In structural modeling one uses
previously-defined components to create the necessary logical operations by connecting their
I/O’s properly. This form of modeling is very similar to Object Oriented Programming; the
components can be thought of as the classes and the logical flow can be thought of as using the

18

specific instantiations of the classes/components. For this thesis, we do not utilize this form of
modeling either.

2.6  Brief Overview of Quartus II

Instructions for Downloading and running Quartus II

For this project we use the free Quartus II Web Edition Software. At the time of publication
for this thesis, it is available at the following web address: http://www.altera.com/products/
software/quartus-ii/web-edition/qts-we-index.html

Fortunately, for the purposes of this project, we only need to use it for its ability to handle
and compile modules for the Cyclone family of FPGAs. It is, however, also useful for viewing
the “Help” files on a number of modules in this project as well as viewing the pinouts for the
FPGA (Assignments->Pins menu in Quartus). Although this level of detail is not necessary for
this project, it does help one understand which signals are internal to the FPGA and therefore
capable of being altered by the user firmware on the v1495, and which signals are external to
the FPGA and not capable of being altered by the user firmware.

2.7  V1495_USR_firmware

2.7.1  Overview

The V1495_USR_firmware is provided by CAEN for the purpose of demonstrating how to
use the v1495 module. This firmware is provided as well on the CD included with this thesis
but can also be found on CAEN’s website. A number of functions are provided to introduce
the V1495 user to the utilities of the V1495.

2.8  GEMReadout Firmware

2.8.1  VHDL Modules

19

v1495usr.vhd

This is the lowest hierarchical level for V1495 user firmware. It includes all of the I/Os as
can be seen on the Pinout for the project. The Pinout for any project in Quartus II can be found
in the Assignments->Pins menu.

tristate_if_rtl.vhd

This module simply contains the logic necessary to control the direction of the FPGA
data bits found in v1495usr.vhd and the logic to control the direction of the bidirectional I/
Os associated with the VME data bus. Although there is probably little reason to change this
section of code a brief description is provided below.

By default the FPGA data bits are set at High-Z (as can be seen by following the signal into
v1495usr_hal.vqm). Since these bits are not used in this project this is of little consequence.

More importantly, the direction of the “LAD” bits (Local Data Bus) is controlled by “LAD_
OE”. If “LAD_OE” is high then the “LAD” bits will be configured as outputs. As reason
would predict, if “LAD_OE” is low then the “LAD” bits will be inputs. Ultimately the value
of “LAD_OE” is controlled by convoluted code found in v1495usr_hal.vqm. It should be
noted that in GEMReadout.vhd the signals that determines whether a read or write operation is
to be performed are “REG_RDEN” and “REG_WREN” respectively. Again, these signals are
generated in the convoluted logic found in v1495usr_hal.vqm.

spare_if_rtl.vhd

This module simply contains the logic necessary to control the direction of the spare
bidirectional I/Os included with the Cyclone FPGA. These are not utilized with the current
version of the GEMReadout program but could potentially be adapted for future utility by
CAEN for the V1495. It would be difficult to adapt their usage at this level of design because
we are not privy to the inner schematics of the V1495 board to see where these signals go.

GEMReadout.vhd

This module handles all of the receiving/transmitting functionality to/from the VFAT ICs,
the FIFO storage, the PLL timing (if used), control of the LEDs on the V1495 and the ROC
interface capabilities via the VME bus.

As previously stated, it is not the intent of this thesis to clearly describe how VHDL works
which is needed if one wants to be able to read the code and precisely determine how this
module works. A UML has been provided to help elucidate the operation of this module. See

20

section “Inputs and Outputs” for a description of the I/Os for the V1495 including the LEDs.

GEMTrigger.vhd

The GEMTrigger module handles the conversion of a single-pulse trigger to a 3-bit (or
8-bit in the case of the Calibration Pulse signal) trigger word which is sent to the T1 line of
the VFATs which is in sync with the MCLK. The single-pulse trigger can be generated as a
hard trigger from the G0 port, as a soft trigger internally, as a reset trigger internally, or even
as a calibration trigger which can be generated either internally or externally depending on
the value written to the A_GEM_CALIB_START register. Each of these triggers is more
thoroughly described below.

A hard trigger from the G0 input port when active generates whatever signal is located in
HARD_TRIG_WORD. By default this is the LV1A signal, “100”, as this is probably used the
most often. From the VFAT2 Manual we know that this is a request to the VFAT for a data
packet of all of the hits on the lines. For a more thorough explanation of this process see the
section in the VFAT2 Manual on page covering an LV1A request. HARD_TRIG_WORD is

GEMReadout #Bits I/O Description
nLBRES 1 In Async Reset (active low)
LCLK 1 In Local Bus Clock
REG_WREN 1 In Write pulse (active high)
REG_RDEN 1 In Read pulse (active high)
REG_ADDR 16 In Register address
REG_DIN 16 In Data from CAEN Local Bus
REG_DOUT 16 Out Data to CAEN Local Bus
USR_ACCESS 1 In Current register access is
A 32 In In A (32 x LVDS/ECL)
B 32 In In B (32 x LVDS/ECL)
C 32 Out Out C (32 x LVDS)
SELG 1 Out Output Level Select (NIM/TTL)
nOEG 1 Out Output Enable
GOUT 2 Out Out G - LEMO (2 x NIM/TTL)
GIN 2 In In G - LEMO (2 x NIM/TTL)
IDD	 3	 In	 D	slot	mezzanine	Identifier
SELD 1 Out D slot Port Signal Standard Select
nOED 1 Out D slot Port Direction
D 32 In D slot Data In Bus
IDE	 3	 In	 E	slot	mezzanine	Identifier
SELE 1 Out E slot Port Signal Standard Select
nOEE 1 Out E slot Port Direction
E 32 Out E slot Data In Bus
IDF	 3	 In	 F	slot	mezzanine	Identifier
SELF 1 Out F slot Port Signal Standard Select
nOEF 1 Out F slot Port Direction
F 32 In F slot Data Out Bus
SPARE_OUT 12 Out Spare Data Out
SPARE_IN 12 In Spare Data In
SPARE_DIR 12 Out Spare Direction (0 => Out, 1 => In)
RED_PULSE 1 Out RED Led Pulse (active high)
GREEN_PULSE 1 Out GREEN Led Pulse (active high)

PLLCLK_90
Rising Edge?

PLLCLK
Rising Edge?

CALIB_TRIGGER_LCLK
Low?

Set appropriate C Port outputs to T1 signal

Set HARD_TRIGGER = GIN(1)

Yes Yes

Yes

No

UML Diagram 2-1: GEMReadout.vhd

21

GEMReadout #Bits I/O Description
nLBRES 1 In Async Reset (active low)
LCLK 1 In Local Bus Clock
REG_WREN 1 In Write pulse (active high)
REG_RDEN 1 In Read pulse (active high)
REG_ADDR 16 In Register address
REG_DIN 16 In Data from CAEN Local Bus
REG_DOUT 16 Out Data to CAEN Local Bus
USR_ACCESS 1 In Current register access is
A 32 In In A (32 x LVDS/ECL)
B 32 In In B (32 x LVDS/ECL)
C 32 Out Out C (32 x LVDS)
SELG 1 Out Output Level Select (NIM/TTL)
nOEG 1 Out Output Enable
GOUT 2 Out Out G - LEMO (2 x NIM/TTL)
GIN 2 In In G - LEMO (2 x NIM/TTL)
IDD	 3	 In	 D	slot	mezzanine	Identifier
SELD 1 Out D slot Port Signal Standard Select
nOED 1 Out D slot Port Direction
D 32 In D slot Data In Bus
IDE	 3	 In	 E	slot	mezzanine	Identifier
SELE 1 Out E slot Port Signal Standard Select
nOEE 1 Out E slot Port Direction
E 32 Out E slot Data In Bus
IDF	 3	 In	 F	slot	mezzanine	Identifier
SELF 1 Out F slot Port Signal Standard Select
nOEF 1 Out F slot Port Direction
F 32 In F slot Data Out Bus
SPARE_OUT 12 Out Spare Data Out
SPARE_IN 12 In Spare Data In
SPARE_DIR 12 Out Spare Direction (0 => Out, 1 => In)
RED_PULSE 1 Out RED Led Pulse (active high)
GREEN_PULSE 1 Out GREEN Led Pulse (active high)

PLLCLK_90
Rising Edge?

PLLCLK
Rising Edge?

CALIB_TRIGGER_LCLK
Low?

Set appropriate C Port outputs to T1 signal

Set HARD_TRIGGER = GIN(1)

Yes Yes

Yes

No

nLBRES Low? LCLK
rising edge?

CALIB_TRIGGER_LCLK
high?

CALIB_TRIGGER_SIZE =
0x”FFFF”?

PLL_LOCK Low?

Set HEART_BEAT_CNT = 0
Set CALIB_TRIGGER_LCLK = 0

Set GEM_TX_WORD_x = 0
Set GEM_TX_START = 0
Set SOFT_TRIGGER = 0

Set SOFT_TRIG_WORD = 0
Set HARD_TRIG_WORD = 0

Set REG_RESET = 0
Set GEM_TX_START_EXT_EN = 0

Set CALIB_TRIGGER_EN = 0

Set SRESET = “111”
Set RESET = 1

Set CALIB_TRIGGER high
Set CALIB_TRIGGER_LCLK low

Set RESET to LSB of SRESET

Set CALIB_TRIGGER to GIN(1)

Increment HEART_BEAT_CNT
by one

Bit shift SRESET right by one
and set REG_RESET to MSB of

SRESET

Yes

Yes
Yes

Yes

Yes

No

No
No

No

No

UML Diagram 2-2: GEMReadout.vhd

22

programmable by writing to bits 5-3 in register A_GEM_TRIG_WORD (offset + 0x0014). See
Table 2-1 on page 16 for a list of the available registers on the v1495.

A soft trigger is similar to a hard trigger except that is requested by a write operation to
the A_GEM_SOFT_TRIG register. The SOFT_TRIGGER_WORD is located in bits 2-0 in
register A_GEM_TRIG_WORD (offset + 0x0014). The default value for this word is “000”.

The calibration trigger is the most complicated of all the triggers. Its main purpose is for
quickly producing the S-curves necessary to adjust the threshold values for the channels on
the VFATs high enough to reject systemic noise but still low enough to detect sensitive, real
signals. A single sequence of the calibration trigger is comprised of a CalPulse signal , “110”,
followed by a single blank clock cycle which is then followed by an LV1A signal, “100” to the
T1 line.

There are two different ways of using the calibration trigger pulse. A write to the A_GEM_
CALIB_START (offset + 0x000E) register with words 0x0000 – 0xFFFE (anything other than
0xFFFF) will cause a single burst of the calibration pulse sequence immediately following
the write request. Writing 0xFFFF to this register causes the calibration pulse sequence to
only pulse when a single external trigger pulse is applied to the G0 input. This can be done
indefinitely and is changed by writing a value other than 0xFFFF to the aforementioned
register. Originally it was intended to have the number being written to this register control
how many times the calibration pulse sequence was executed, but this functionality awaits
future development.

v1495usr_pkg.vhd

This module simply contains the offset address for all of the user registers of the v1495.
Table 2-1 listed in “Addressing the V1495” gives a detailed description of the names and
addresses of these registers as listed in this module as well as their equivalent names in
v1495Lib.o data structures.

PLLBlock.vhd

A PLL, Phase Lock Loop, is a timing stabilization mechanism. It is available to the users
of the Cyclone for clock frequencies between 15Mhz and 1Ghz. At these extreme frequencies
clock phase synchronization can become problematic for the internal hardware of the FPGA.
By using at least one of the two available PLLs on the Cyclone FPGA, one can mitigate the
clock phase synchronization error and thus achieve a much higher running frequency. For
frequencies below 15Mhz the PLLBlock module is completely bypassed in the firmware.
Usually these versions of the firmware include the suffix “NoPLL” in their names to indicate
the difference.

For the GEMReadout user firmware this module takes care to replicate the original MCLK

23

signal coming in on G0 and outputting it to the PLLCLK signal (when referring to the VFAT
is the MCLK). It also creates a clock signal that is an exact inverse of this signal. This signal
has the misnomer PLLCLK_90. Since the VFATs change their output bits on a rising edge of
MCLK and evaluate incoming bits on the falling edge of MCLK, the inputs and outputs to the
v1495 are evaluated and changed on the rising edge of a clock 180 degrees out of phase with
this (i.e. PLLCLK_90).

The main portion of this module uses the “altpll” component from the Quartus II library.
For a complete description of all of the attributes of this module see the help files in Quartus
II on “altpll”. There are, however, a number of attributes that the user may need to change in
order to run MCLK for the v1495 at a specific frequency between 15Mhz and 1Ghz. A listing
and a brief description of each of these is provided below.

inclk0_input_frequency: This is the value given for the frequency of the primary clock. The
value is the period given in pico seconds and is not enclosed in quotations. This is not listed in
the help-file literature. Example: A value of 25000 would give a primary running frequency of
40Mhz since 1/25000*10^-12 = 40Mhz

clk1_phase_shift: This is the value given for the amount of phase shift on the secondary
clock output relative to the primary clock output. This, too, is measured in picoseconds, but
this attribute’s value does require quotations. Example: For the previous examples of 40Mhz,
if the user requires a phase shift of 180 degrees the value of “12500” must be entered (i.e. half
of the frequency period).

GEMRxEventDataFIFO.vhd/ GEMRxEventSizeFIFO.vhd

These modules both contain the specific layout of the DataFIFO and the SizeFIFO and both
are extremely similar in layout.

The dcfifo, of which the DataFIFO and SizeFIFO are comprised, is a true dual-port FIFO
(one clock for reading and one for writing as long as it is not the same node) using M4K
technology from the Cyclone family of devices. For reference to this device structure see
the Quartus II help files on “dcfifo Megafunction” where a more detailed description of the
parameters for specific parameters can be found.

The dcfifo megafunction works precisely as one would expect a FIFO to work. When a
write request is received by the FIFO, the word currently on “data[]” will be written into the
FIFO (as long as the FIFO is not full). For the DataFIFO this is the current word taken from
the DataOut stream. If the FIFO is full, the FIFO will ignore the write request. Therefore, care
must be taken to ensure that the FIFO does not reach capacity or else the V1495 will start
dropping packets received from the VFATs. As long as the FIFO is not empty, when a read
request is received the FIFO will place the oldest word in the FIFO on the “q[]” signal. In the
case of the DataFIFO this is “EVENT_DATA.”. In the case of the SizeFIFO this is “EVENT_
SIZE.” A detailed description of how the DataFIFO and SizeFIFO are used for our project can

24

be found in the section GEMRxChannel.

For our project some of the more important parameters for the DataFIFO are as follows:

•	 Number of words the DataFIFO can store = 1024

•	 Bit width of the data being read and written to the FIFO = 16

-  N.B. This matches the width of the data bus on the VME.

•	 Bit width of the number of words that are currently in the FIFO = 10

-  N.B. This matches the number of bits needed to report the maximum number of
words that can be stored in the FIFO.

•	 The parameters for the SizeFIFO are as follows:

•	 Number of words the DataFIFO can store = 64

•	 Bit width of the data being read and written to the FIFO = 4

-  N.B. This matches the width of the data bus on the VME.

•	 Bit width of the number of words that are currently in the FIFO = 6

-  N.B. This matches the number of bits needed to report the maximum number of
words that can be stored in the FIFO.

GEMRxChannel.vhd

The GEMRxChannel.vhd module governs the behavior of the data received from the VFATs
on their respective DataOut and DataValid channels. This is shown below in UML Diagram
2-3 on page 25 for this module. For a more detailed description of the parameters settings for
these FIFOs see section “GEMRxEventDataFIFO.vhd/ GEMRxEventSizeFIFO.vhd.”

GEMTxChannel.vhd

This section was not utilized during the final stages of this project. It was used (along with
the GEMReadout_tb) during the initial stages to provide debugging methods for the basic
functionality of the I/Os on the V1495. It structure is simply as shown in UML Diagram 2-4
on page 26.

GEMReadout_tb.vhd

25

GEMRxChannel GEMReadout #Bits I/O
LCLK => LCLK 1 In
RD_EVENT_SIZE => GEMx_RD_EVENT_SIZE 1 In
EVENT_SIZE => GEMx_EVENT_SIZE 4 Out
EVENT_COUNT => GEMx_EVENT_COUNT 6 Out
RD_EVENT_DATA => GEMx_RD_EVENT_DATA 1 In
EVENT_DATA => GEMx_EVENT_DATA 16 Out
EVENT_DATA_SIZE => GEMx_EVENT_DATA_SIZE 10 Out
GEM_EVENTS_SENT => GEMx_EVENTS_SENT 32 Out
CLK => PLLCLK 1 In
RESET => RESET 1 In
DATA => GEMx_DATA 1 In
DATA_VALID => GEMx_DATA_VALID 1 In

where ‘x’ is for the respective VFAT

RESET = 1?

CLK Rising Edge?

DATA_VALID High?

DATA_VALID
Falling Edge?

BIT_COUNTER full?

BIT_COUNTER full?

EventSizeFIFO/
EventDataFIFO full?

Reset GEM_EVENTS_SENT
Reset BIT_COUNTER

Reset WORD_COUNTER

Add one to BIT_COUNTER

Bit-shift SHIFT_REG left by one
and place DATA in LSB

Add one to GEM_EVENTS_SENT

Add one to WORD_COUNTER

Enter WORD_COUNTER
into EventSizeFIFO

Enter SHIFT_REG word into
EventDataFIFO

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

Yes

No

No

No

UML Diagram 2-3:GEMRxChannel.vhd

26

Although it was not used in the final stages of this project (that which was conducted at
ISU), this module provides a useful test bench with which to test the basic I/O functionality
of the V1495. This is particularly useful when one does not have access to VFAT chips for
generating and capturing data packets. See UML Diagram 2-5 on page 27 and UML Diagram
2-6 on page 28.

UML Diagram 2-4:GEMTxChannel.vhd

GEMTxChannel GEMReadout #Bits I/O
LCLK => LCLK 1 In
GEM_TX_WORD_x => GEM_TX_WORD_x 16 In
GEM_TX_START => GEM_TX_START 1 In
CLK => PLLCLK 1 In
TX_EXT_EN => GEM_TX_START_EXT_EN 1 In
HARD_TRIGGER => HARD_TRIGGER 1 In
DATA => GEM_TX_DATA 1 Out
DATA_VALID => GEM_TX_DATA_VALID 1 Out

where ‘x’ is for the respective TX_WORD (0-B)

CLK Rising Edge?

GEM_TX_START
Rising Edge?

HARD_TRIGGER
Rising Edge?

TX_EXT_EN
high?

BIT_COUNTER
empty?

Set DATA to MSB of GEM_TX_SHIFT_REG

Bit-shift GEM_TX_SHIFT_REG
left by one

Decrement
BIT_COUNTER

by one

Set DATA_VALID highSet DATA_VALID low

Set BIT_COUNTER to 224

Concatenate GEM_TX_WORD_x (0->B)
and place in GEM_TX_SHIFT_REG

Yes

No

No

Yes

Yes

No

Yes No

Yes

No

27

2.8.2  Verilog Modules

v1495usr_hal.vqm

This module contains many of the logical functions that serve as a building foundation for
the v1495 module. These have been automatically generated using the Synopsys Synplify

GEMReadout_tb #Bits I/O Description
nLBRES 1 In Async Reset (active low)
LCLK 1 In Local Bus Clock
REG_WREN 1 In Write pulse (active high)
REG_RDEN 1 In Read pulse (active high)
REG_ADDR 16 In Register address
REG_DIN 16 In Data from CAEN Local Bus
REG_DOUT 16 Out Data to CAEN Local Bus
USR_ACCESS 1 In Current register access is
A 32 In In A (32 x LVDS/ECL)
B 32 In In B (32 x LVDS/ECL)
C 32 Out Out C (32 x LVDS)
SELG 1 Out Output Level Select (NIM/TTL)
nOEG 1 Out Output Enable
GOUT 2 Out Out G - LEMO (2 x NIM/TTL)
GIN 2 In In G - LEMO (2 x NIM/TTL)
IDD	 3	 In	 D	slot	mezzanine	Identifier
SELD 1 Out D slot Port Signal Standard Select
nOED 1 Out D slot Port Direction
D 32 In D slot Data In Bus
IDE	 3	 In	 E	slot	mezzanine	Identifier
SELE 1 Out E slot Port Signal Standard Select
nOEE 1 Out E slot Port Direction
E 32 Out E slot Data In Bus
IDF	 3	 In	 F	slot	mezzanine	Identifier
SELF 1 Out F slot Port Signal Standard Select
nOEF 1 Out F slot Port Direction
F 32 In F slot Data Out Bus
PDL_WR 1 Out Write Enable
PDL_SEL 1 Out PDL Selection (0=>PDL0, 1=>PDL1)
PDL_READ 8 In Read Data
PDL_WRITE 8 Out Write Data
PDL_DIR 1 Out Direction (0=>Write, 1=>Read)
PDL0_OUT 1 In Signal from PDL0 Output
PDL1_OUT 1 In Signal from PDL1 Output
DLO0_OUT 1 In Signal from DLO0 Output
DLO1_OUT 1 In Signal from DLO1 Output
PDL0_IN 1 Out Signal TO PDL0 Input
PDL1_IN 1 Out Signal TO PDL1 Input
DLO0_GATE 1 Out DLO0 Gate (active high)
DLO1_GATE 1 Out DLO1 Gate (active high)
SPARE_OUT 12 Out SPARE Data Out
SPARE_IN 12 In SPARE Data In
SPARE_DIR 12 Out SPARE Direction (0 => OUT, 1 => IN)
RED_PULSE 1 Out RED Led Pulse (active high)
GREEN_PULSE 1 Out GREEN Led Pulse (active high)

LCLK Falling Edge?

LCLK Falling Edge?

Set REG_WREN to 1
Set REG_ADDR to ADDR

Set REG_DIN to DATA

Set REG_WREN to 0
wait for 10ns

Set LCLK frequency to 40 Mhz
Set nLBRES to 0 for 100ns then 1 thereafter

Set GIN(1) (e.g. MCLK) to 32Mhz

UML Diagram 2-5: GEMReadout_tb.vhd

28

UML Diagram 2-6: GEMReadout_tb.vhd

Set USR_ACCESS to 1
Set B,D,F to 0

Set PDL_READ, PDL0_OUT, PDL1_OUT,
DLO0_OUT, DL01_OUT, and SPARE_IN to 0

Call UWrite
Set ADDR to A_GEM_TRIG_WORD

Set DATA to 0x26
wait for 200ns

Call UWrite
Set ADDR to A_GEM_SOFT_TRIG

Set DATA to 0x0
wait for 200ns

Call UWrite
Set ADDR to A_GEM_SOFT_TRIG

Set DATA to 0x0
wait for 200ns

Call UWrite; Set ADDR to A_GEM_TX_WORD_0 and Set DATA to 0xA012
Call UWrite; Set ADDR to A_GEM_TX_WORD_1 and Set DATA to 0xC345
Call UWrite; Set ADDR to A_GEM_TX_WORD_2 and Set DATA to 0xE678
Call UWrite; Set ADDR to A_GEM_TX_WORD_3 and Set DATA to 0x9ABC
Call UWrite; Set ADDR to A_GEM_TX_WORD_4 and Set DATA to 0xDEF0
Call UWrite; Set ADDR to A_GEM_TX_WORD_5 and Set DATA to 0x1234
Call UWrite; Set ADDR to A_GEM_TX_WORD_6 and Set DATA to 0x5678

Call UWrite; Set ADDR to A_GEM_TX_WORD_7 and Set DATA to 0x9ABC
Call UWrite; Set ADDR to A_GEM_TX_WORD_8 and Set DATA to 0xDEF0
Call UWrite; Set ADDR to A_GEM_TX_WORD_9 and Set DATA to 0x1234
Call UWrite; Set ADDR to A_GEM_TX_WORD_A and Set DATA to 0x5678

Call UWrite; Set ADDR to A_GEM_TX_WORD_B and Set DATA to 0x9ABC
wait for 1 us

-- Check Event Counters (should be zero here) --
Call URead A_GEMXY_FIFOSIZE

X represents GEM block A or B
Y represents GEM 0-5 for each respective GEM block

-- Check Event Counters (should be NUM_EVENTS here) --
Call UWrite NUM_EVENTS Times (64)

Set ADDR to A_GEM_TX_START
Set DATA to 0x0

-- Check Event Counters --
Call URead A_GEMXY_FIFOSIZE

X represents GEM block A or B
Y represents GEM 0-5 for each respective GEM block

-- Readout Events NUM_EVENTS Times --
Call URead A_GEMXY_FIFOSIZE

Call UReadEvent A_GEMXY_EVENTDATA
X represents GEM block A or B

Y represents GEM 0-5 for each respective GEM block

-- Check Event Counters (should be zero here) --
Call URead A_GEMXY_FIFOSIZE

X represents GEM block A or B
Y represents GEM 0-5 for each respective GEM block

29

design entry/synthesis tool. Synopsys Synplify is used to create, synthesize, and optimize
a project and then generate a Verilog Quartus Mapping file (.vqm) for compilation in the
Quartus II software. Reference here to the Altera website:

http://www.altera.com/support/software/nativelink/synthesis/synplicity/eda_view_using_syn-
plty.html

