Fission-fragment distribution for ${ }^{238} \underline{\mathrm{U}}$

Philipp Starovoytov

My primary goal was to simulate the primary fission fragment distribution for $\mathrm{U}-238$. Fission fragments distribution is a function of mass of the fragment A, its charge Z, and its total kinetic energy TKE. I have addressed all of the three dependencies separately following the steps done by Talou et al, 2011 [1] for neutron induced fission of Pu-239. He showed that the fragment yield is a function of all three variables as:

$$
\begin{equation*}
Y(A, Z, T K E)=Y(A) * P(Z \mid A) * P(T K E \mid A) \tag{1}
\end{equation*}
$$

1. Fragment distribution as a function of mass of the fragment $Y(A)$

I have found several papers where mass distribution was measured. Figure 1 shows the results of two experiments - U-238 fission caused by neutrons, Debertin et al, 1978 [2] and photons, Goeoek et al, 2011 [3]. Fragment mass distribution is not very different for these two cases. To use these data in futher calculations I have interpolated the photofission data by performing a least-square fit of the experimental mass yields to obtain our "best" estimate of $Y(A)$. I also constrained the resulting yields to be symmetric about $\mathrm{A}=120$.

Figure 1. Yield as a function of a fragment mass.

2. Fragment distribution as a function of charge of the fragment $P(Z, A)$

The charge distribution for a given mass A was obtained using the Z_{p} model, described by Wahl, 2002 [4]. The Z_{p} model treats dispersion of fractional independent yields of primary fission products with Z for each A. For every heavy mass, the charge deviation ΔZ, the charge width parameter σ_{z}, and the oddeven factors F_{Z} and F_{N} are calculated. Then, for each heavy mass, the charge distribution was then determined using the following equation:

$$
\begin{equation*}
P(Z \mid A)=\frac{1}{2} F(A) N(A)[\operatorname{erf}(V)-\operatorname{erf}(W)] \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
V=\frac{Z-Z_{p}+0.5}{\sigma_{z} \sqrt{2}} \tag{3}
\end{equation*}
$$

The most probable charge can be found as:

$$
\begin{equation*}
Z_{p}=A_{h} \frac{Z_{c}}{A_{c}}+\Delta Z \tag{5}
\end{equation*}
$$

where Z_{c} and A_{c} are charge and mass of the compound nucleus. In our case $Z_{c}=92$ and $A_{c}=238$.
$\mathrm{N}(\mathrm{A})$ is just a normalization coefficient needed to satisfy $\Sigma P(Z \mid A)=1$ for any A . This normalization is required because the even-odd factors, $F(A)$, destroy the intrinsic normalization properties of Gaussian distributions. $F(A)$ coefficients are calculated as following:

For \mathbf{Z}	For \mathbf{N}	$\mathbf{F}(\mathbf{A})$
Even	Even	$F_{Z} \cdot F_{N}$
Even	Odd	F_{Z} / F_{N}
Odd	Even	F_{N} / F_{Z}
Odd	Odd	$1 /\left(F_{Z} \cdot F_{N}\right)$

Table 1. Calculating odd-even factors $F(A)$ for different number of neutrons and protons in a fragment.

The four parameters, $\Delta Z, \sigma_{Z}, F_{Z}$, and F_{N} were determined for each fission reaction by the method of least squares. I have adopted these parameters from the Wahl report [4], see Figure 2. Using the above parameters, Equations (2)-(5), and Table 1, I calculated the charge distribution as follows. First, I found the most probable charge as a function of A (see Figure 3). Next, I calculated the odd-even coefficients $F(A)$ for different numbers of neutrons and protons, using formulas from Table 1 (see Figure 4). Finally, I calculated the yield $P(Z, A)$ as a function of A and Z of the fragment (see Figure 5).

Figure 2. The four parameters, $\Delta Z, \sigma_{Z} F_{Z}$ and F_{N} adapted from Wahl, 2002 [4].

Figure 3. Most probable charge of the fragment as a function of its atomic mass.

Figure 4. Odd-even factors $F(A)$ as a function of A and Z.

Figure 5. Yield $P(Z, A)$ as a function of A and Z of the fragment.

3. Fragment distribution as a function of kinetic energy of the fragment $P(T K E, A)$

Measurements of the average total kinetic energy per fragment mass $\langle T K E(A)\rangle$ and the width of the (assumed) Gaussian distribution $\sigma_{T K E}^{2}(A)$ were used to reconstruct the total kinetic energy distribution Y (TKE) according to Talou et al, 2011:

$$
\begin{equation*}
\mathrm{P}(\mathrm{TKE} \mid \mathrm{A})=\frac{1}{\sqrt{2 \pi \sigma_{T K E}^{2}(A)}} * \exp \left\{-\frac{[T K E-\{T K E\}(A)]^{2}}{2 \sigma_{T K E}^{2}(A)}\right\} \tag{6}
\end{equation*}
$$

Figures 6 and 7 show the measured data sets on $\langle T K E(A)\rangle$ from Goeoek et al. [2] and Jacobs et al., 1979 [4] correspondingly.

Figure 6. Average total kinetic energy for U-238, adapted from Goeoek et al., 2011 [4]

Using this data I reconstructed the total kinetic energy distribution term, see Figure 8.

The final step was to put all three terms together and thus obtain the overall fragment distribution, which is a function of three variables, A, Z, and TKE, and is a 3D matrix. Different projections of the matrix can be obtained by integrating over one of the variables. To compare our results with Talou's work, I have plotted the yield as a function of the total kinetic energy and atomic mass of the fragment, integrating over the charge.

Figure 7. Sigma of total kinetic energy for photofission of U-238, $E_{\gamma}=12 \mathrm{MeV}$, adopted from Jacobs et al., 1979 [5]

Figure 8. $Y(T K E, A)$ - Yield as a function of the total kinetic energy and atomic number. This is not the final result, this is just the third term in the overall expression (Eq. 1).

Figure 9. A projection of the final distribution, $Y(A, Z, T K E)$.

Figure 10. Comparison of my result for photofission of U-238 (left) and Talou's results (right) for neutron induced fission of Pu-239.

References

[1] Talou P et al., Advanced Monte Carlo modeling of prompt fission neutrons for thermal and fast neutron-induced fission reaction on Pu-239, PHYSICAL REVIEW C 83, 064612 (2011)
[2]Debertin Et AI. ,fission product yields in U-238 fission by Cf-252 neutrons, Int.Conf.on Neutr.Phys.and Nucl.Data,Harwell 1978, page 229, 1978/09
[3]Goeoek et al., Fragment characteristics from fission of 238 U and 234 U induced by 6.5-9.0 MeV bremsstrahlung, Nuclear Physics, Section A, volume 851, page 1, 2011
[4] Wahl, Arthur C., Systematics of Fission-Product Yields, Los Alamos National Laboratory, LA-13928, April 25,2002.
[5] Jacobs, E., Fragment mass and kinetic energy distributions for the photofission of ${ }^{238} \mathrm{U}$ with 12-, 15-, 20-, 30-, and 70-MeV bremsstrahlung, Physical Review C (Nuclear Physics), Volume 20, Issue 6, December 1979, pp.2249-2256

